Curve and Surface Fitting with Splines

Curve and Surface Fitting with Splines
Author: Paul Dierckx
Publisher: Oxford University Press
Total Pages: 308
Release: 1995
Genre: Computers
ISBN: 9780198534402

The fitting of a curve or surface through a set of observational data is a very frequent problem in different disciplines (mathematics, engineering, medicine, ...) with many interesting applications. This book describes the algorithms and mathematical fundamentals of a widely used software package for data fitting with (tensor product) splines. As such it gives a survey of possibilities and benefits but also of the problems to cope with when approximating with this popular type of function. In particular it is demonstrated in detail how the properties of B-splines can be fully exploited for improving the computational efficiency and for incorporating different boundary or shape preserving constraints. Special attention is also paid to strategies for an automatic and adaptive knot selection with intent to obtain serious data reductions. The practical use of the smoothing software is illustrated with many examples, academic as well as taken from real life.

NUMERICAL, SYMBOLIC AND STATISTICAL COMPUTING FOR CHEMICAL ENGINEERS USING MATLAB

NUMERICAL, SYMBOLIC AND STATISTICAL COMPUTING FOR CHEMICAL ENGINEERS USING MATLAB
Author: Ghosh, Pallab
Publisher: PHI Learning Pvt. Ltd.
Total Pages: 416
Release: 2018-09-01
Genre:
ISBN: 9387472523

Numerical, analytical and statistical computations are routine affairs for chemical engineers. They usually prefer a single software to solve their computational problems, and at present, MATLAB has emerged as a powerful computational language, which is preferably used for this purpose, due to its built-in functions and toolboxes. Considering the needs and convenience of the students, the author has made an attempt to write this book, which explains the various concepts of MATLAB in a systematic way and makes its readers proficient in using MATLAB for computing. It mainly focuses on the applications of MATLAB, rather than its use in programming basic numerical algorithms. Commencing with the introduction to MATLAB, the text covers vector and matrix computations, solution of linear and non-linear equations, differentiation and integration, and solution of ordinary and partial differential equations. Next, analytical computations using the Symbolic Math Toolbox and statistical computations using the Statistics and Machine Learning Toolbox are explained. Finally, the book describes various curve fitting techniques using the Curve Fitting Toolbox. Inclusion of all these advanced-level topics in the book stands it out from the rest. KEY FEATURES  Numerous worked-out examples to enable the readers understand the steps involved in solving the chemical engineering problems  MATLAB codes to explain the computational techniques  Several snapshots to help the readers understand the step-by-step procedures of using the toolboxes  Chapter-end exercises, including short-answer questions and numerical problems  Appendix comprising the definitions of some important and special matrices  Supplemented with Solutions Manual containing complete detailed solutions to the unsolved analytical problems  Accessibility of selected colour figures (including screenshots and results/outputs of the programs) cited in the text at www.phindia.com/Pallab_Ghosh. TARGET AUDIENCE • BE/B.Tech (Chemical Engineering) • ME/M.Tech (Chemical Engineering)

Applied Numerical Methods Using MATLAB

Applied Numerical Methods Using MATLAB
Author: Won Y. Yang
Publisher: John Wiley & Sons
Total Pages: 654
Release: 2020-03-31
Genre: Mathematics
ISBN: 1119626714

This new edition provides an updated approach for students, engineers, and researchers to apply numerical methods for solving problems using MATLAB® This accessible book makes use of MATLAB® software to teach the fundamental concepts for applying numerical methods to solve practical engineering and/or science problems. It presents programs in a complete form so that readers can run them instantly with no programming skill, allowing them to focus on understanding the mathematical manipulation process and making interpretations of the results. Applied Numerical Methods Using MATLAB®, Second Edition begins with an introduction to MATLAB usage and computational errors, covering everything from input/output of data, to various kinds of computing errors, and on to parameter sharing and passing, and more. The system of linear equations is covered next, followed by a chapter on the interpolation by Lagrange polynomial. The next sections look at interpolation and curve fitting, nonlinear equations, numerical differentiation/integration, ordinary differential equations, and optimization. Numerous methods such as the Simpson, Euler, Heun, Runge-kutta, Golden Search, Nelder-Mead, and more are all covered in those chapters. The eighth chapter provides readers with matrices and Eigenvalues and Eigenvectors. The book finishes with a complete overview of differential equations. Provides examples and problems of solving electronic circuits and neural networks Includes new sections on adaptive filters, recursive least-squares estimation, Bairstow's method for a polynomial equation, and more Explains Mixed Integer Linear Programing (MILP) and DOA (Direction of Arrival) estimation with eigenvectors Aimed at students who do not like and/or do not have time to derive and prove mathematical results Applied Numerical Methods Using MATLAB®, Second Edition is an excellent text for students who wish to develop their problem-solving capability without being involved in details about the MATLAB codes. It will also be useful to those who want to delve deeper into understanding underlying algorithms and equations.

Modeling of Curves and Surfaces with MATLAB®

Modeling of Curves and Surfaces with MATLAB®
Author: Vladimir Rovenski
Publisher: Springer Science & Business Media
Total Pages: 463
Release: 2010-06-10
Genre: Mathematics
ISBN: 0387712771

This text on geometry is devoted to various central geometrical topics including: graphs of functions, transformations, (non-)Euclidean geometries, curves and surfaces as well as their applications in a variety of disciplines. This book presents elementary methods for analytical modeling and demonstrates the potential for symbolic computational tools to support the development of analytical solutions. The author systematically examines several powerful tools of MATLAB® including 2D and 3D animation of geometric images with shadows and colors and transformations using matrices. With over 150 stimulating exercises and problems, this text integrates traditional differential and non-Euclidean geometries with more current computer systems in a practical and user-friendly format. This text is an excellent classroom resource or self-study reference for undergraduate students in a variety of disciplines.

An Introduction to Numerical Methods

An Introduction to Numerical Methods
Author: Abdelwahab Kharab
Publisher: CRC Press
Total Pages: 447
Release: 2018-09-05
Genre: Mathematics
ISBN: 1351605917

Previous editions of this popular textbook offered an accessible and practical introduction to numerical analysis. An Introduction to Numerical Methods: A MATLAB® Approach, Fourth Edition continues to present a wide range of useful and important algorithms for scientific and engineering applications. The authors use MATLAB to illustrate each numerical method, providing full details of the computed results so that the main steps are easily visualized and interpreted. This edition also includes a new chapter on Dynamical Systems and Chaos. Features Covers the most common numerical methods encountered in science and engineering Illustrates the methods using MATLAB Presents numerous examples and exercises, with selected answers at the back of the book

Scientific Computing with MATLAB

Scientific Computing with MATLAB
Author: Dingyu Xue
Publisher: CRC Press
Total Pages: 586
Release: 2018-09-03
Genre: Mathematics
ISBN: 1315362104

Scientific Computing with MATLAB®, Second Edition improves students’ ability to tackle mathematical problems. It helps students understand the mathematical background and find reliable and accurate solutions to mathematical problems with the use of MATLAB, avoiding the tedious and complex technical details of mathematics. This edition retains the structure of its predecessor while expanding and updating the content of each chapter. The book bridges the gap between problems and solutions through well-grouped topics and clear MATLAB example scripts and reproducible MATLAB-generated plots. Students can effortlessly experiment with the scripts for a deep, hands-on exploration. Each chapter also includes a set of problems to strengthen understanding of the material.

Applied Numerical Methods for Chemical Engineers

Applied Numerical Methods for Chemical Engineers
Author: Navid Mostoufi
Publisher: Academic Press
Total Pages: 503
Release: 2022-05-22
Genre: Technology & Engineering
ISBN: 0128229349

Applied Numerical Methods for Chemical Engineers emphasizes the derivation of a variety of numerical methods and their application to the solution of engineering problems, with special attention to problems in the chemical engineering field. These algorithms encompass linear and nonlinear algebraic equations, eigenvalue problems, finite difference methods, interpolation, differentiation and integration, ordinary differential equations, boundary value problems, partial differential equations, and linear and nonlinear regression analysis. MATLAB is adopted as the calculation environment throughout the book because of its ability to perform all the calculations in matrix form, its large library of built-in functions, its strong structural language, and its rich graphical visualization tools. Through this book, students and other users will learn about the basic features, advantages and disadvantages of various numerical methods, learn and practice many useful m-files developed for different numerical methods in addition to the MATLAB built-in solvers, develop and set up mathematical models for problems commonly encountered in chemical engineering, and solve chemical engineering related problems through examples and after-chapter problems with MATLAB by creating application m-files. - Clearly and concisely develops a variety of numerical methods and applies them to the solution of chemical engineering problems. These algorithms encompass linear and nonlinear algebraic equations, eigenvalue problems, finite difference methods, interpolation, linear and nonlinear regression analysis, differentiation and integration, ordinary differential equations, boundary value problems, and partial differential equations - Includes systematic development of the calculus of finite differences and its application to the integration of differential equations, and a detailed discussion of nonlinear regression analysis, with powerful programs for implementing multivariable nonlinear regression and statistical analysis of the results - Makes extensive use of MATLAB and Excel, with most of the methods discussed implemented into general MATLAB functions. All the MATLAB-language scripts developed are listed in the text and included in the book's companion website - Includes numerous real-world examples and homework problems drawn from the field of chemical and biochemical engineering

Basics of MATLAB Programming

Basics of MATLAB Programming
Author: R. Balaji
Publisher: Notion Press
Total Pages: 486
Release: 2020-09-03
Genre: Technology & Engineering
ISBN: 164892624X

The first edition of ‘Basics of MATLAB Programming’ offers a brief glimpse of the power and flexibility of MATLAB. This book is intended to assist undergraduates with learning in programming, specifically in MATLAB. The MATLAB codes are given in Courier New font [MATLAB font] to get the feel of MATLAB environment. It combines engineering mathematics with MATLAB. This book has around ten chapters comprising Arrays, Functions, Control statements, Plotting, Simulink and other miscellaneous concepts. It consists of many real-life examples which help in better understanding of MATLAB.

Meshfree Approximation Methods with MATLAB

Meshfree Approximation Methods with MATLAB
Author: Gregory E. Fasshauer
Publisher: World Scientific
Total Pages: 520
Release: 2007
Genre: Technology & Engineering
ISBN: 981270633X

Meshfree approximation methods are a relatively new area of research. This book provides the salient theoretical results needed for a basic understanding of meshfree approximation methods. It places emphasis on a hands-on approach that includes MATLAB routines for all basic operations.

Introduction to Modeling and Simulation

Introduction to Modeling and Simulation
Author: Mark W. Spong
Publisher: John Wiley & Sons
Total Pages: 438
Release: 2023-01-09
Genre: Technology & Engineering
ISBN: 1119982901

Introduction to Modeling and Simulation An essential introduction to engineering system modeling and simulation from a well-trusted source in engineering and education This new introductory-level textbook provides thirteen self-contained chapters, each covering an important topic in engineering systems modeling and simulation. The importance of such a topic cannot be overstated; modeling and simulation will only increase in importance in the future as computational resources improve and become more powerful and accessible, and as systems become more complex. This resource is a wonderful mix of practical examples, theoretical concepts, and experimental sessions that ensure a well-rounded education on the topic. The topics covered in Introduction to Modeling and Simulation are timeless fundamentals that provide the necessary background for further and more advanced study of one or more of the topics. The text includes topics such as linear and nonlinear dynamical systems, continuous-time and discrete-time systems, stability theory, numerical methods for solution of ODEs, PDE models, feedback systems, optimization, regression and more. Each chapter provides an introduction to the topic to familiarize students with the core ideas before delving deeper. The numerous tools and examples help ensure students engage in active learning, acquiring a range of tools for analyzing systems and gaining experience in numerical computation and simulation systems, from an author prized for both his writing and his teaching over the course of his over-40-year career. Introduction to Modeling and Simulation readers will also find: Numerous examples, tools, and programming tips to help clarify points made throughout the textbook, with end-of-chapter problems to further emphasize the material As systems become more complex, a chapter devoted to complex networks including small-world and scale-free networks – a unique advancement for textbooks within modeling and simulation A complementary website that hosts a complete set of lecture slides, a solution manual for end-of-chapter problems, MATLAB files, and case-study exercises Introduction to Modeling and Simulation is aimed at undergraduate and first-year graduate engineering students studying systems, in diverse avenues within the field: electrical, mechanical, mathematics, aerospace, bioengineering, physics, and civil and environmental engineering. It may also be of interest to those in mathematical modeling courses, as it provides in-depth material on MATLAB simulation and contains appendices with brief reviews of linear algebra, real analysis, and probability theory.