Fundamental Physicochemical Properties of Germanene-related Materials

Fundamental Physicochemical Properties of Germanene-related Materials
Author: Chi-Hsuan Lee
Publisher: Elsevier
Total Pages: 556
Release: 2023-05-23
Genre: Technology & Engineering
ISBN: 0443158029

Fundamental Physicochemical Properties of Germanene-related Materials: A Theoretical Perspective provides a comprehensive review of germanene-related materials to help users understand the essential properties of these compounds. The book covers various germanium complex states such as germanium oxides, germanium on Ag, germanium/silicon composites and germanium compounds. Diverse phenomena are clearly illustrated using the most outstanding candidates of the germanium/germanene-related material. Delicate simulations and analyses are thoroughly demonstrated under the first-principles method, being fully assisted by phenomenological models. Macroscopic phenomena in chemical systems, including their principles, practices and concepts of physics such as energy, structure, thermodynamics and quantum chemistry are fully covered. Germanium-based materials play critical roles in the basic and applied sciences, as clearly revealed in other group-IV and group-V condensed-matter systems. Their atomic configurations are suitable for creating the active chemical bonding among the identical and/or different nearest-neighboring atoms leading to diverse physical/chemical/material environments. - Provides a comprehensive review of germanene-related materials with a physicochemical and theoretical foundation that is useful for readers in understanding the essential properties of these compounds - Presents a unique theoretical framework under single and multi-hybridization theory - Contains significant combinations with phenomenological and experimental measurements - Focuses on the study of macroscopic phenomena in chemical systems in terms of their principles, practices and concepts of physics such as energy, structure, thermodynamics and quantum chemistry

Surface Science of Photocatalysis

Surface Science of Photocatalysis
Author: Jiaguo Yu
Publisher: Academic Press
Total Pages: 602
Release: 2020-03-31
Genre: Technology & Engineering
ISBN: 0081028903

Surface Science of Photocatalysis, Volume 32, summarizes significant findings on the surface science behind various classic and novel photocatalysts for energy and environmental applications, with special emphasis on important surface/interface processes in photocatalysis, such as interfacial charge transfer, function of co-catalysts, and adsorption over photocatalyst surface. This book timely and systematically reviews the state-of-the-art of the surface science in semiconductor-based photocatalysis, serving as a useful reference book for both new and experienced researchers in this field.

Principles of Inorganic Materials Design

Principles of Inorganic Materials Design
Author: John N. Lalena
Publisher: John Wiley & Sons
Total Pages: 720
Release: 2020-05-27
Genre: Technology & Engineering
ISBN: 1119486831

Learn the fundamentals of materials design with this all-inclusive approach to the basics in the field Study of materials science is an important aspect of curricula at universities worldwide. This text is designed to serve students at a fundamental level, positioning materials design as an essential aspect of the study of electronics, medicine, and energy storage. Now in its 3rd edition, Principles of Inorganic Materials Design is an introduction to relevant topics including inorganic materials structure/property relations and material behaviors. The new edition now includes chapters on computational materials science, intermetallic compounds, and covalent compounds. The text is meant to aid students in their studies by providing additional tools to study the key concepts and understand recent developments in materials research. In addition to the many topics covered, the textbook includes: • Accessible learning tools to help students better understand key concepts • Updated content including case studies and new information on computational materials science • Practical end-of-chapter exercises to assist students with the learning of the material • Short biographies introducing pioneers in the field of inorganic materials science For undergraduates just learning the material or professionals looking to brush up on their knowledge of current materials design information, this text covers a wide range of concepts, research, and topics to help round out their education. The foreword to the first edition was written by the 2019 Chemistry Nobel laureate Prof. John B. Goodenough.

Uncertainty Quantification in Multiscale Materials Modeling

Uncertainty Quantification in Multiscale Materials Modeling
Author: Yan Wang
Publisher: Woodhead Publishing
Total Pages: 604
Release: 2020-03-12
Genre: Technology & Engineering
ISBN: 0081029411

Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.

Condensed Matter Field Theory

Condensed Matter Field Theory
Author: Alexander Altland
Publisher: Cambridge University Press
Total Pages: 785
Release: 2010-03-11
Genre: Science
ISBN: 0521769752

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.

Density Functional Calculations

Density Functional Calculations
Author: Gang Yang
Publisher: BoD – Books on Demand
Total Pages: 274
Release: 2018-05-16
Genre: Science
ISBN: 1789231329

Density functional theory (DFT) ranks as the most widely used quantum mechanical method and plays an increasingly larger role in a number of disciplines such as chemistry, physics, material, biology, and pharmacy. DFT has long been used to complement experimental investigations, while now it is also regarded as an indispensable and powerful tool for researchers of different fields. This book is divided into five sections that include original chapters written by experts in their fields: "Method Development and Validation," "Spectra and Thermodynamics," "Catalysis and Mechanism," "Material and Molecular Design," and "Multidisciplinary Integration." I would like to express my sincere gratitude to all contributors and recommend this book to both beginners and experienced researchers.