Principles of Algebra 2 (Teacher Guide)

Principles of Algebra 2 (Teacher Guide)
Author: Katherine Hannon
Publisher: Master Books
Total Pages: 416
Release: 2021-04-22
Genre: Mathematics
ISBN: 9781683442325

Algebra doesn't have to consist of solving hundreds of apparently meaningless problems! These worksheets, while they include abstract problems to help the student practice the skills, also include real-life problems that allow the student to remember the purpose of what they're learning, give them a chance to explore God's handiwork, and equip them to apply math outside of a textbook.Easy-to-use daily scheduleCarefully graduated problems to help students learn the materialBuilt-in review of conceptsProblems that let the students apply algebra to real-life settingsPerforated pages to tear out and hand studentsChapter quizzes and quarter tests, along with a final exam

The Principles of Mathematics

The Principles of Mathematics
Author: Bertrand Russell
Publisher: W. W. Norton & Company
Total Pages: 580
Release: 1996
Genre: Mathematics
ISBN: 9780393314045

Russell's classic The Principles of Mathematics sets forth his landmark thesis that mathematics and logic are identical--that what is commonly called mathematics is simply later deductions from logical premises.

Principia Mathematica

Principia Mathematica
Author: Alfred North Whitehead
Publisher:
Total Pages: 688
Release: 1910
Genre: Logic, Symbolic and mathematical
ISBN:

Principles of Mathematics Book 1 Teacher Guide

Principles of Mathematics Book 1 Teacher Guide
Author: Katherine Loop
Publisher: New Leaf Publishing Group
Total Pages: 31
Release: 2016-08-05
Genre: Juvenile Nonfiction
ISBN: 0890519919

Teacher Guide for Book 1 of the Principles of Mathematics - Biblical Worldview Curriculum for junior high! Math is a real-life tool that points us to God and helps us explore His creation, yet it often comes across as dry facts and meaningless rules. Here at last is a curriculum that has a biblical worldview integrated throughout the text and problems, not just added as an afterthought. The resources in the Teacher Guide will help students master and apply the skills learned in the Student Textbook. What does this Teacher Guide include? Worksheets, Quizzes, and Tests: These perforated, three-hole punched pages help provide practice on the principles taught in the main student textbook.Answer Keys: The answers are included for the worksheets, quizzes, and tests found in this Teacher Guide.Schedule: A suggested calendar schedule is provided for completing the material in one year, though this can be adapted to meet individual student needs. There is also an accelerated schedule for completing the material in one semester. Are there any prerequisites for this course? This curriculum is aimed at grades 6-8, fitting into most math approaches the year or two years prior to starting high school algebra. If following traditional grade levels, Book 1 should be completed in grade 6 or 7, and Book 2 in grade 7 or 8. In Book 1 students should have a basic knowledge of arithmetic (basic arithmetic will be reviewed, but at a fast pace and while teaching problem-solving skills and a biblical worldview of math) and sufficient mental development to think through the concepts and examples given. Typically, anyone in sixth grade or higher should be prepared to begin. The focus of the course is actually learning math for life, not simply preparing to pass a test.

Lectures in Logic and Set Theory: Volume 2, Set Theory

Lectures in Logic and Set Theory: Volume 2, Set Theory
Author: George Tourlakis
Publisher: Cambridge University Press
Total Pages: 0
Release: 2011-07-21
Genre: Mathematics
ISBN: 9780521168489

Volume II, on formal (ZFC) set theory, incorporates a self-contained "chapter 0" on proof techniques so that it is based on formal logic, in the style of Bourbaki. The emphasis on basic techniques provides a solid foundation in set theory and a thorough context for the presentation of advanced topics (such as absoluteness, relative consistency results, two expositions of Godel's construstive universe, numerous ways of viewing recursion and Cohen forcing).

Analysis I

Analysis I
Author: Terence Tao
Publisher: Springer
Total Pages: 366
Release: 2016-08-29
Genre: Mathematics
ISBN: 9811017891

This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.

Algebra

Algebra
Author: Saunders Mac Lane
Publisher: American Mathematical Society
Total Pages: 650
Release: 2023-10-10
Genre: Mathematics
ISBN: 147047476X

This book presents modern algebra from first principles and is accessible to undergraduates or graduates. It combines standard materials and necessary algebraic manipulations with general concepts that clarify meaning and importance. This conceptual approach to algebra starts with a description of algebraic structures by means of axioms chosen to suit the examples, for instance, axioms for groups, rings, fields, lattices, and vector spaces. This axiomatic approach—emphasized by Hilbert and developed in Germany by Noether, Artin, Van der Waerden, et al., in the 1920s—was popularized for the graduate level in the 1940s and 1950s to some degree by the authors' publication of A Survey of Modern Algebra. The present book presents the developments from that time to the first printing of this book. This third edition includes corrections made by the authors.