Bose-Condensed Gases at Finite Temperatures

Bose-Condensed Gases at Finite Temperatures
Author: Allan Griffin
Publisher: Cambridge University Press
Total Pages: 475
Release: 2009-02-19
Genre: Science
ISBN: 1139473832

The discovery of Bose–Einstein condensation (BEC) in trapped ultracold atomic gases in 1995 has led to an explosion of theoretical and experimental research on the properties of Bose-condensed dilute gases. The first treatment of BEC at finite temperatures, this book presents a thorough account of the theory of two-component dynamics and nonequilibrium behaviour in superfluid Bose gases. It uses a simplified microscopic model to give a clear, explicit account of collective modes in both the collisionless and collision-dominated regions. Major topics such as kinetic equations, local equilibrium and two-fluid hydrodynamics are introduced at an elementary level. Explicit predictions are worked out and linked to experiments. Providing a platform for future experimental and theoretical studies on the finite temperature dynamics of trapped Bose gases, this book is ideal for researchers and graduate students in ultracold atom physics, atomic, molecular and optical physics and condensed matter physics.

Quantum Gases: Finite Temperature And Non-equilibrium Dynamics

Quantum Gases: Finite Temperature And Non-equilibrium Dynamics
Author: Nick P Proukakis
Publisher: World Scientific
Total Pages: 579
Release: 2013-02-21
Genre: Science
ISBN: 1908979704

The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems.This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of editorial notes.Both graduate students and established researchers wishing to understand the state of the art will greatly benefit from this comprehensive and up-to-date review of non-equilibrium and finite temperature techniques in the exciting and expanding field of quantum gases and liquids./a

Excitations in a Bose-condensed Liquid

Excitations in a Bose-condensed Liquid
Author: Allan Griffin
Publisher: Cambridge University Press
Total Pages: 322
Release: 1993-08-19
Genre: Science
ISBN: 0521432715

This volume gives an up-to-date, systematic account of the microscopic theory of Bose-condensed fluids developed since the late 1950s. In contrast to the usual phenomenological discussions of superfluid 4He, the present treatment is built on the pivotal role of the Bose broken symmetry and a Bose condensate. The many-body formalism is developed, with emphasis on the one- and two-particle Green's functions and their relation to the density response function. These are all coupled together by the Bose broken symmetry, which provides the basis for understanding the elementary excitations and response functions in the hydrodynamic and collisionless regions. It also explains the difference between excitations in the superfluid and normal phases. Chapter 4 gives the first critical assessment of the experimental evidence for a Bose condensate in liquid 4He, based on high-momentum neutron scattering data.

Field Theory Of Condensed Matter And Ultracold Gases - Volume 1

Field Theory Of Condensed Matter And Ultracold Gases - Volume 1
Author: Nicolas Dupuis
Publisher: World Scientific
Total Pages: 689
Release: 2023-07-26
Genre: Science
ISBN: 180061392X

This book provides a pedagogical introduction to the concepts and methods of quantum field theory necessary for the study of condensed matter and ultracold atomic gases. After a thorough discussion of the basic methods of field theory and many-body physics (functional integrals, perturbation theory, Feynman diagrams, correlation functions and linear response theory, symmetries and their consequences, etc.), the book covers a wide range of topics, from electron gas and Fermi-liquid theory to superfluidity and superconductivity, magnetic instabilities in electron systems, and dynamical mean-field theory of Mott transition. The focus is on the study of model Hamiltonians, where the microscopic physics and characteristic energy scales are encoded into a few effective parameters, rather than first-principle methods which start from a realistic Hamiltonian at the microscopic level and then make material-specific predictions. The reader is expected to be familiar with elementary quantum mechanics and statistical physics, and some acquaintance with condensed-matter physics and ultracold gases may also be useful. No prior knowledge of field theory or many-body problem is required.

Quantum Phase Transitions in Cold Atoms and Low Temperature Solids

Quantum Phase Transitions in Cold Atoms and Low Temperature Solids
Author: Kaden Richard Alan Hazzard
Publisher: Springer Science & Business Media
Total Pages: 239
Release: 2011-06-28
Genre: Science
ISBN: 1441981799

The primary focus of this thesis is to theoretically describe nanokelvin experiments in cold atomic gases, which offer the potential to revolutionize our understanding of strongly correlated many-body systems. The thesis attacks major challenges of the field: it proposes and analyzes experimental protocols to create new and interesting states of matter and introduces theoretical techniques to describe probes of these states. The phenomena considered include the fractional quantum Hall effect, spectroscopy of strongly correlated states, and quantum criticality, among others. The thesis also clarifies experiments on disordered quantum solids, which display a variety of exotic phenomena and are candidates to exhibit so-called "supersolidity." It collects experimental results and constrains their interpretation through theoretical considerations. This Doctoral Thesis has been accepted by Cornell University, Ithaca, USA.

Universal Themes of Bose-Einstein Condensation

Universal Themes of Bose-Einstein Condensation
Author: Nick P. Proukakis
Publisher: Cambridge University Press
Total Pages: 663
Release: 2017-04-27
Genre: Science
ISBN: 1108138624

Following an explosion of research on Bose–Einstein condensation (BEC) ignited by demonstration of the effect by 2001 Nobel prize winners Cornell, Wieman and Ketterle, this book surveys the field of BEC studies. Written by experts in the field, it focuses on Bose–Einstein condensation as a universal phenomenon, covering topics such as cold atoms, magnetic and optical condensates in solids, liquid helium and field theory. Summarising general theoretical concepts and the research to date - including novel experimental realisations in previously inaccessible systems and their theoretical interpretation - it is an excellent resource for researchers and students in theoretical and experimental physics who wish to learn of the general themes of BEC in different subfields.

Bose-Einstein Condensation

Bose-Einstein Condensation
Author: Lev. P. Pitaevskii
Publisher: Oxford University Press
Total Pages: 392
Release: 2003-04-03
Genre: Science
ISBN: 9780198507192

Bose-Einstein Condensation represents a new state of matter and is one of the cornerstones of quantum physics, resulting in the 2001 Nobel Prize. Providing a useful introduction to one of the most exciting field of physics today, this text will be of interest to a growing community of physicists, and is easily accessible to non-specialists alike.