Finite and Algorithmic Model Theory

Finite and Algorithmic Model Theory
Author: Javier Esparza
Publisher: Cambridge University Press
Total Pages: 355
Release: 2011-03-10
Genre: Computers
ISBN: 0521718201

Surveys of current research in logical aspects of computer science that apply finite and infinite model-theoretic methods.

Finite Model Theory and Its Applications

Finite Model Theory and Its Applications
Author: Erich Grädel
Publisher: Springer Science & Business Media
Total Pages: 447
Release: 2007-06-04
Genre: Computers
ISBN: 3540688048

Finite model theory,as understoodhere, is an areaof mathematicallogic that has developed in close connection with applications to computer science, in particular the theory of computational complexity and database theory. One of the fundamental insights of mathematical logic is that our understanding of mathematical phenomena is enriched by elevating the languages we use to describe mathematical structures to objects of explicit study. If mathematics is the science of patterns, then the media through which we discern patterns, as well as the structures in which we discern them, command our attention. It isthis aspect oflogicwhichis mostprominentin model theory,“thebranchof mathematical logic which deals with the relation between a formal language and its interpretations”. No wonder, then, that mathematical logic, and ?nite model theory in particular, should ?nd manifold applications in computer science: from specifying programs to querying databases, computer science is rife with phenomena whose understanding requires close attention to the interaction between language and structure. This volume gives a broadoverviewof some central themes of ?nite model theory: expressive power, descriptive complexity, and zero–one laws, together with selected applications to database theory and arti?cial intelligence, es- cially constraint databases and constraint satisfaction problems. The ?nal chapter provides a concise modern introduction to modal logic,which emp- sizes the continuity in spirit and technique with ?nite model theory.

Computational and Algorithmic Problems in Finite Fields

Computational and Algorithmic Problems in Finite Fields
Author: Igor Shparlinski
Publisher: Springer Science & Business Media
Total Pages: 253
Release: 2012-12-06
Genre: Mathematics
ISBN: 940111806X

This volume presents an exhaustive treatment of computation and algorithms for finite fields. Topics covered include polynomial factorization, finding irreducible and primitive polynomials, distribution of these primitive polynomials and of primitive points on elliptic curves, constructing bases of various types, and new applications of finite fields to other araes of mathematics. For completeness, also included are two special chapters on some recent advances and applications of the theory of congruences (optimal coefficients, congruential pseudo-random number generators, modular arithmetic etc.), and computational number theory (primality testing, factoring integers, computing in algebraic number theory, etc.) The problems considered here have many applications in computer science, coding theory, cryptography, number theory and discrete mathematics. The level of discussion presuppose only a knowledge of the basic facts on finite fields, and the book can be recommended as supplementary graduate text. For researchers and students interested in computational and algorithmic problems in finite fields.

Finite Markov Chains and Algorithmic Applications

Finite Markov Chains and Algorithmic Applications
Author: Olle Häggström
Publisher: Cambridge University Press
Total Pages: 132
Release: 2002-05-30
Genre: Mathematics
ISBN: 9780521890014

Based on a lecture course given at Chalmers University of Technology, this 2002 book is ideal for advanced undergraduate or beginning graduate students. The author first develops the necessary background in probability theory and Markov chains before applying it to study a range of randomized algorithms with important applications in optimization and other problems in computing. Amongst the algorithms covered are the Markov chain Monte Carlo method, simulated annealing, and the recent Propp-Wilson algorithm. This book will appeal not only to mathematicians, but also to students of statistics and computer science. The subject matter is introduced in a clear and concise fashion and the numerous exercises included will help students to deepen their understanding.

A Course in Model Theory

A Course in Model Theory
Author: Katrin Tent
Publisher: Cambridge University Press
Total Pages: 259
Release: 2012-03-08
Genre: Mathematics
ISBN: 052176324X

Concise introduction to current topics in model theory, including simple and stable theories.

Dense Sphere Packings

Dense Sphere Packings
Author: Thomas Hales
Publisher: Cambridge University Press
Total Pages: 286
Release: 2012-09-06
Genre: Mathematics
ISBN: 113957647X

The 400-year-old Kepler conjecture asserts that no packing of congruent balls in three dimensions can have a density exceeding the familiar pyramid-shaped cannonball arrangement. In this book, a new proof of the conjecture is presented that makes it accessible for the first time to a broad mathematical audience. The book also presents solutions to other previously unresolved conjectures in discrete geometry, including the strong dodecahedral conjecture on the smallest surface area of a Voronoi cell in a sphere packing. This book is also currently being used as a blueprint for a large-scale formal proof project, which aims to check every logical inference of the proof of the Kepler conjecture by computer. This is an indispensable resource for those who want to be brought up to date with research on the Kepler conjecture.

Topics in Graph Automorphisms and Reconstruction

Topics in Graph Automorphisms and Reconstruction
Author: Josef Lauri
Publisher: Cambridge University Press
Total Pages: 207
Release: 2016-06-02
Genre: Mathematics
ISBN: 1316610446

An in-depth coverage of selected areas of graph theory focusing on symmetry properties of graphs, ideal for beginners and specialists.

Stochastic Stability of Differential Equations in Abstract Spaces

Stochastic Stability of Differential Equations in Abstract Spaces
Author: Kai Liu
Publisher: Cambridge University Press
Total Pages: 277
Release: 2019-05-02
Genre: Mathematics
ISBN: 1108626491

The stability of stochastic differential equations in abstract, mainly Hilbert, spaces receives a unified treatment in this self-contained book. It covers basic theory as well as computational techniques for handling the stochastic stability of systems from mathematical, physical and biological problems. Its core material is divided into three parts devoted respectively to the stochastic stability of linear systems, non-linear systems, and time-delay systems. The focus is on stability of stochastic dynamical processes affected by white noise, which are described by partial differential equations such as the Navier–Stokes equations. A range of mathematicians and scientists, including those involved in numerical computation, will find this book useful. It is also ideal for engineers working on stochastic systems and their control, and researchers in mathematical physics or biology.

Regular and Irregular Holonomic D-Modules

Regular and Irregular Holonomic D-Modules
Author: Masaki Kashiwara
Publisher: Cambridge University Press
Total Pages: 119
Release: 2016-05-26
Genre: Mathematics
ISBN: 1316613453

A unified treatment of the Riemann-Hilbert correspondence for (not necessarily regular) holonomic D-modules using indsheaves.

Discrete Quantum Walks on Graphs and Digraphs

Discrete Quantum Walks on Graphs and Digraphs
Author: Chris Godsil
Publisher: Cambridge University Press
Total Pages: 152
Release: 2023-01-12
Genre: Mathematics
ISBN: 1009261703

Discrete quantum walks are quantum analogues of classical random walks. They are an important tool in quantum computing and a number of algorithms can be viewed as discrete quantum walks, in particular Grover's search algorithm. These walks are constructed on an underlying graph, and so there is a relation between properties of walks and properties of the graph. This book studies the mathematical problems that arise from this connection, and the different classes of walks that arise. Written at a level suitable for graduate students in mathematics, the only prerequisites are linear algebra and basic graph theory; no prior knowledge of physics is required. The text serves as an introduction to this important and rapidly developing area for mathematicians and as a detailed reference for computer scientists and physicists working on quantum information theory.