Intrinsic Bioremediation

Intrinsic Bioremediation
Author: Robert E. Hinchee
Publisher:
Total Pages: 290
Release: 1995
Genre: Nature
ISBN:

An international group of researchers and engineers discuss using natural attenuation to degrade contaminants and thereby remediate soils and groundwater. This volume describes laboratory studies and field demonstrations in support of subsurface remediation at military, manufactured gas plant, landfill, petroleum spill, and other sites. The contaminants of concern include benzene, toluene, ethyl-benzene, and xylenes (BTEX); naphthalene; trichloroethene; trichlorethane; and perchloroethylene. Analytical methods for assessing the potential for natural attenuation (passive bioremediation) at a given site and for confirming and documenting efficacy are discussed.

Engineering and Design

Engineering and Design
Author: Us Army Corps Of Engineers
Publisher: Military Bookshop
Total Pages: 434
Release: 2002-06-01
Genre: Technology & Engineering
ISBN: 9781780397702

This manual provides practical guidance for the design and operation of soil vapor extraction (SVE) and bioventing (BV) systems. It is intended for use by engineers, geologists, hydrogeologists, and soil scientists, chemists, project managers, and others who possess a technical education and some design experience but only the broadest familiarity with SVE or BV systems.

Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface

Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface
Author: Todd H. Wiedemeier
Publisher: John Wiley & Sons
Total Pages: 634
Release: 1999-03-08
Genre: Technology & Engineering
ISBN: 9780471197492

The first comprehensive guide to one of today's most innovative approaches to environmental contamination Natural attenuation is gaining increasing attention as a nonintrusive, cost-effective alternative to standard remediation techniques for environmental contamination. This landmark work presents the first in-depth examination of the theory, mechanisms, and application of natural attenuation. Written by four internationally recognized leaders in this approach, the book describes both biotic and abiotic natural attenuation processes, focusing on two of the environmental contaminants most frequently encountered in groundwater--fuels and chlorinated solvents. The authors draw on a wealth of combined experience to detail successful techniques for simulating natural attenuation processes and predicting their effectiveness in the field. They also show how natural attenuation works in the real world, using numerous examples and case studies from a wide range of leading-edge projects nationwide involving fuel hydrocarbons and chlorinated solvents. Finally, they discuss the evaluation and assessment of natural attenuation and explore the design of long-term monitoring programs. An indispensable reference for anyone working in environmental remediation, Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface is essential reading for scientists and engineers in a range of industries, as well as state and federal environmental regulators, and professors and graduate students in environmental or chemical engineering.

The Use of Dispersants in Marine Oil Spill Response

The Use of Dispersants in Marine Oil Spill Response
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 341
Release: 2020-04-24
Genre: Nature
ISBN: 0309478219

Whether the result of an oil well blowout, vessel collision or grounding, leaking pipeline, or other incident at sea, each marine oil spill will present unique circumstances and challenges. The oil type and properties, location, time of year, duration of spill, water depth, environmental conditions, affected biomes, potential human community impact, and available resources may vary significantly. Also, each spill may be governed by policy guidelines, such as those set forth in the National Response Plan, Regional Response Plans, or Area Contingency Plans. To respond effectively to the specific conditions presented during an oil spill, spill responders have used a variety of response optionsâ€"including mechanical recovery of oil using skimmers and booms, in situ burning of oil, monitored natural attenuation of oil, and dispersion of oil by chemical dispersants. Because each response method has advantages and disadvantages, it is important to understand specific scenarios where a net benefit may be achieved by using a particular tool or combination of tools. This report builds on two previous National Research Council reports on dispersant use to provide a current understanding of the state of science and to inform future marine oil spill response operations. The response to the 2010 Deepwater Horizon spill included an unprecedented use of dispersants via both surface application and subsea injection. The magnitude of the spill stimulated interest and funding for research on oil spill response, and dispersant use in particular. This study assesses the effects and efficacy of dispersants as an oil spill response tool and evaluates trade-offs associated with dispersant use.

Chemical Safety of Drinking-water

Chemical Safety of Drinking-water
Author: Terrence Thompson
Publisher: WHO
Total Pages: 142
Release: 2007
Genre: Medical
ISBN: 9789241546768

Contamination of drinking-water is a significant concern for public health throughout the world. Microbial hazards make the largest contribution to waterborne disease in developed and developing countries. Nevertheless, chemicals in water supplies can cause serious health problems--whether the chemicals are naturally occurring or derive from sources of pollution. At a global scale, fluoride and arsenic are the most significant chemicals, each affecting perhaps millions of people. However, many other chemicals can be important contaminants of drinking-water under specific local conditions. Often, identification and assessment of risks to health from drinking-water relies excessively on analysis of water samples. The limitations of this approach are well recognized, and contributed to the delay in recognizing arsenic in drinking-water as a significant health concern in Bangladesh and elsewhere. To overcome such limitations, the latest edition of the World Health Organization (WHO) Guidelines for Drinking-water Quality (WHO, 2004; WHO,2006) emphasizes effective preventive management through a 'framework for drinking-water safety' that incorporates 'water safety plans.' Effective preventive management of chemicals in drinking-water requires simple tools for distinguishing the few chemicals of potential local or national concern from the unmanageably long list of chemicals of possible significance. The aim is to identify and prioritize the chemicals of concern, to overcome the limitations of direct analysis of water quality, and ensure that limited resources are allocated towards the monitoring, assessment and control of the chemicals that pose the greatest health risks. Identifying and prioritizing chemical risks presents a challenge, especially in developing countries, because information on the presence of chemicals in water supplies is often lacking. This document provides guidance to help readers to meet that challenge. It shows how information on aspects such as geology and industrial and agricultural development, which is often readily available, can be used to identify potential chemical contaminants (and potential sources of chemicals), from catchment to consumer, and thus prioritize risks. As a supporting document to the Guidelines for Drinking-water Quality (WHO, 2004; WHO, 2006), this publication is aimed at policy-makers, regulators, managers and public health practitioners at national and local level. It is divided into three parts: Part A provides general guidance on using limited information in prioritizing chemicals in drinking-water for risk management. The need for such guidance is outlined in Chapter 1,which also describes the administrative and policy context. Chapter 2 describes the principles applied in prioritizing chemicals, provides information on some factors that affect chemical concentrations along pathways, and highlights several specific chemicals that are frequently considered priorities because of their widespread occurrence or significant health effects. Chapter 3 discusses the role of drinking-water standards and guidelines, and provides an overview of contemporary water quality management procedures. Part B provides practical guidance on identifying specific chemicals that are likely to be of concern in individual water supply systems. It groups chemical contaminants into five categories on the basis of their potential sources: naturally occurring, from agriculture activities, from human settlements, from industrial activities, and from water treatment and distribution processes themselves. Part C comprises the appendices. It includes guidance on the most likely sources of potential contaminants and on identifying chemicals that could be of concern in particular circumstances. The appendices address potential sources of chemicals considered in the WHO drinking-water guidelines (WHO, 2004; WHO, 2006), chemicals potentially discharged in effluents from industrial sources, and the association of pesticides with crops and crop types. This information is presented in an accessible format that will help users to determine the chemical hazards that can arise in the catchment, in treatment and in distribution, in large, medium and small water supplies. Many experts worldwide contributed to this work over a period of several years, beginning with the 1st Meeting of Experts on Monitoring Chemicals in Drinking Water, held in Bangkok, Thailand, in January 2001. This was followed by the 2nd Meeting of Experts on Monitoring Chemicals in Drinking Water, also held in Bangkok, in December 2001. Both meetings were sponsored by WHO and hosted by the Department of Health, Ministry of Public Health, Thailand. The draft guidance document was subsequently tested in a series of field trials in 2002-2003 in Indonesia, Fiji, Nepal, Mongolia, the Philippines and Thailand. Lessons learnt through the field trials provided feedback that was valuable in revising and finalizing the document. Readers should note that while this publication has been developed as a supporting document for, and with reference to, the Guidelines for Drinking-water Quality, the guidelines themselves are frequently updated and the latest information should always be sought by reference to relevant World Health Organization publications and web site. (http://www.who.int/water_sanitation_health/dwq/guidelines/en/index.html).

In Situ Remediation of Chlorinated Solvent Plumes

In Situ Remediation of Chlorinated Solvent Plumes
Author: Hans F. Stroo
Publisher: Springer Science & Business Media
Total Pages: 807
Release: 2010-09-10
Genre: Technology & Engineering
ISBN: 1441914013

In the late 1970s and early 1980s, our nation began to grapple with the legacy of past disposal practices for toxic chemicals. With the passage in 1980 of the Comprehensive Envir- mental Response, Compensation, and Liability Act (CERCLA), commonly known as Sup- fund, it became the law of the land to remediate these sites. The U. S. Department of Defense (DoD), the nation’s largest industrial organization, also recognized that it too had a legacy of contaminated sites. Historic operations at Army, Navy, Air Force, and Marine Corps facilities, ranges, manufacturing sites, shipyards, and depots had resulted in widespread contamination of soil, groundwater, and sediment. While Superfund began in 1980 to focus on remediation of heavily contaminated sites largely abandoned or neglected by the private sector, the DoD had already initiated its Installation Restoration Program in the mid-1970s. In 1984, the DoD began the Defense Environmental Restoration Program (DERP) for contaminated site assessment and remediation. Two years later, the U. S. Congress codified the DERP and directed the Secretary of Defense to carry out a concurrent program of research, development, and demonstration of innovative remediation technologies. As chronicled in the 1994 National Research Council report, “Ranking Hazardous-Waste Sites for Remedial Action,” our early estimates on the cost and suitability of existing techn- ogies for cleaning up contaminated sites were wildly optimistic. Original estimates, in 1980, projected an average Superfund cleanup cost of a mere $3.

Introduction to Phytoremediation of Contaminated Groundwater

Introduction to Phytoremediation of Contaminated Groundwater
Author: James E. Landmeyer
Publisher: Springer Science & Business Media
Total Pages: 427
Release: 2011-09-18
Genre: Science
ISBN: 9400719574

This book provides the reader with the comprehensive view necessary to understand and critically evaluate the design, implementation, and monitoring of phytoremediation at sites characterized by contaminated groundwater. Part I presents the historical foundation of the interaction between plants and groundwater, introduces fundamental groundwater concepts for plant physiologists, and introduces basic plant physiology for hydrogeologists. Part II presents information on how to assess, design, implement, and monitor phytoremediation projects for hydrologic control. Part III presents how plants take up and detoxify a wide range of organic xenobiotics in contaminated groundwater systems, and provides various approaches on how this can be assessed and monitored. Throughout, concepts are emphasized with numerous case studies, illustrations and pertinent literature citations.

Geotechnical and Geoenvironmental Engineering Handbook

Geotechnical and Geoenvironmental Engineering Handbook
Author: R. Kerry Rowe
Publisher: Springer Science & Business Media
Total Pages: 1130
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 146151729X

Preface. Dedication. List of Figures. List of Tables. List of Contributors. Basic Behavior and Site Characterization. 1. Introduction; R.K. Rowe. 2. Basic Soil Mechanics; P.V. Lade. 3. Engineering Properties of Soils and Typical Correlations; P.V. Lade. 4. Site Characterization; D.E. Becker. 5. Unsaturated Soil Mechanics and Property Assessment; D.G. Fredlund, et al. 6. Basic Rocks Mechanics and Testing; K.Y. Lo, A.M. Hefny. 7. Geosynthetics: Characteristics and Testing; R.M. Koerner, Y.G. Hsuan. 8. Seepage, Drainage and Dewatering; R.W. Loughney. Foundations and Pavements. 9. Shallo.