Fatigue of Structures and Materials

Fatigue of Structures and Materials
Author: J. Schijve
Publisher: Springer Science & Business Media
Total Pages: 627
Release: 2008-12-16
Genre: Science
ISBN: 1402068085

Fatigue of structures and materials covers a wide scope of different topics. The purpose of the present book is to explain these topics, to indicate how they can be analyzed, and how this can contribute to the designing of fatigue resistant structures and to prevent structural fatigue problems in service. Chapter 1 gives a general survey of the topic with brief comments on the signi?cance of the aspects involved. This serves as a kind of a program for the following chapters. The central issues in this book are predictions of fatigue properties and designing against fatigue. These objectives cannot be realized without a physical and mechanical understanding of all relevant conditions. In Chapter 2 the book starts with basic concepts of what happens in the material of a structure under cyclic loads. It illustrates the large number of variables which can affect fatigue properties and it provides the essential background knowledge for subsequent chapters. Different subjects are presented in the following main parts: • Basic chapters on fatigue properties and predictions (Chapters 2–8) • Load spectra and fatigue under variable-amplitude loading (Chapters 9–11) • Fatigue tests and scatter (Chapters 12 and 13) • Special fatigue conditions (Chapters 14–17) • Fatigue of joints and structures (Chapters 18–20) • Fiber-metal laminates (Chapter 21) Each chapter presents a discussion of a speci?c subject.

Fatigue of Structures and Materials

Fatigue of Structures and Materials
Author: Jaap Schijve
Publisher: Springer Science & Business Media
Total Pages: 528
Release: 2006-03-16
Genre: Science
ISBN: 0306483963

This book is primarily a textbook. It is written for engineers, students and teachers, and it should also be useful for people working on various topics related to fatigue of structures and materials. The book can be used for graduate and undergraduate courses and for short courses for people already working in the industry, laboratories, or research institutes. Furthermore, the book offers various comments which can be useful to research-workers in order to consider the practical relevance of laboratory investigations and to plan future research. An important theme of the book is the understanding of what happens in the material of a structure in service if the structure is subjected to a spectrum of cyclic loads. Knowledge of the fatigue mechanism in the material and how it can be affected by a large variety of practical conditions is essential for dealing with fatigue problems. The designer of a dynamically loaded structure must “design against fatigue”. This includes not only the overall concept of the structure with related safety and economic aspects, but also questions on detail design, joints, production and material surface quality. At the same time, the designer must try to predict the fatigue performance of the structure. This requires a knowledge of the various influencing factors, also because predictions on fatigue have their limitations and shortcomings. Similar considerations arise if fatigue problems occur after a long period in service when decisions must be made on remedial actions.

Fatigue of Structures and Materials

Fatigue of Structures and Materials
Author: Jaap Schijve
Publisher: Springer Science & Business Media
Total Pages: 528
Release: 2001
Genre: Science
ISBN: 0792370139

This is primarily a textbook written for engineers, students and teachers, and for people working on fatigue problems of engineering structures and materials. An important theme is what happens in the material of an engineering structure subjected to a spectrum of cyclic loads in service

Fatigue of Materials

Fatigue of Materials
Author: Subra Suresh
Publisher: Cambridge University Press
Total Pages: 708
Release: 1998-10-29
Genre: Technology & Engineering
ISBN: 9780521578479

Written by a leading researcher in the field, this revised and updated second edition of a highly successful book provides an authoritative, comprehensive and unified treatment of the mechanics and micromechanisms of fatigue in metals, non-metals and composites. The author discusses the principles of cyclic deformation, crack initiation and crack growth by fatigue, covering both microscopic and continuum aspects. The book begins with discussions of cyclic deformation and fatigue crack initiation in monocrystalline and polycrystalline ductile alloys as well as in brittle and semi-/non-crystalline solids. Total life and damage-tolerant approaches are then introduced in metals, non-metals and composites followed by more advanced topics. The book includes an extensive bibliography and a problem set for each chapter, together with worked-out example problems and case studies. This will be an important reference for anyone studying fracture and fatigue in materials science and engineering, mechanical, civil, nuclear and aerospace engineering, and biomechanics.

Fatigue of Materials and Structures

Fatigue of Materials and Structures
Author: Claude Bathias
Publisher: John Wiley & Sons
Total Pages: 415
Release: 2013-03-04
Genre: Technology & Engineering
ISBN: 1118623371

The design of mechanical structures with improved and predictable durability cannot be achieved without a thorough understanding of the mechanisms of fatigue damage and more specifically the relationships between the microstructure of materials and their fatigue properties. Written by leading experts in the field, this book (which is complementary to Fatigue of Materials and Structures: Application to Damage and Design, also edited by Claude Bathias and André Pineau), provides an authoritative, comprehensive and unified treatment of the mechanics and micromechanisms of fatigue in metals, polymers and composites. Each chapter is devoted to one of the major classes of materials or to different types of fatigue damage, thereby providing overall coverage of the field. The book deals with crack initiation, crack growth, low-cycle fatigue, gigacycle fatigue, shorts cracks, fatigue micromechanisms and the local approach to fatigue damage, corrosion fatigue, environmental effects and variable amplitude loadings, and will be an important and much used reference for students, practicing engineers and researchers studying fracture and fatigue in numerous areas of mechanical, structural, civil, design, nuclear, and aerospace engineering as well as materials science.

Fatigue and Durability of Structural Materials

Fatigue and Durability of Structural Materials
Author: Gary R. Halford
Publisher: ASM International
Total Pages: 471
Release: 2006
Genre: Architecture
ISBN: 1615030743

Fatigue and Durability of Structural Materials explains how mechanical material behavior relates to the design of structural machine components. The major emphasis is on fatigue and failure behavior using engineering models that have been developed to predict, in advance of service, acceptable fatigue and other durability-related lifetimes. The book covers broad classes of materials used for high-performance structural applications such as aerospace components, automobiles, and power generation systems. Coverage focuses on metallic materials but also addresses unique capabilities of important nonmetals. The concepts are applied to behavior at room or ambient temperatures; a planned second volume will address behavior at higher-temperatures. The volume is a repository of the most significant contributions by the authors to the art and science of material and structural durability over the past half century. During their careers, including 40 years of direct collaboration, they have developed a host of durability models that are based on sound physical and engineering principles. Yet, the models and interpretation of behavior have a unique simplicity that is appreciated by the practicing engineer as well as the beginning student. In addition to their own pioneering work, the authors also present the work of numerous others who have provided useful results that have moved progress in these fields. This book will be of immense value to practicing mechanical and materials engineers and designers charged with producing structural components with adequate durability. The coverage is appropriate for a range of technical levels from undergraduate engineering students through material behavior researchers and model developers. It will be of interest to personnel in the automotive and off-highway vehicle manufacturing industry, the aeronautical industry, space propulsion and the power generation/conversion industry, the electric power industry, the machine tool industry, and any industry associated with the design and manufacturing of mechanical equipment subject to cyclic loads.

Fatigue Design

Fatigue Design
Author: Carl C. Osgood
Publisher: Elsevier
Total Pages: 617
Release: 2013-10-22
Genre: Technology & Engineering
ISBN: 1483155226

Fatigue Design, Second Edition discusses solutions of previous problems in fatigue as controlled by their particular conditions. The book aims to demonstrate the limitations of some methods and explores the realism and validity of the resulting solutions. The text is comprised of four chapters that tackle a specific area of concern. Chapter 1 provides the introduction and covers the scope, level, and limitations of the book. Chapter 2 deals with the characteristics of design approach, and Chapter 3 talks about the prediction of fatigue life. The last chapter discusses the general factors in fatigue. The book will be of great interest to researchers and professionals concerned with fatigue analysis, such as engineers and designers.

Fatigue Life Prediction of Composites and Composite Structures

Fatigue Life Prediction of Composites and Composite Structures
Author: Anastasios P. Vassilopoulos
Publisher: Woodhead Publishing
Total Pages: 766
Release: 2019-10-08
Genre: Technology & Engineering
ISBN: 0081025769

Fatigue Life Prediction of Composites and Composite Structures, Second Edition, is a comprehensive review of fatigue damage and fatigue life modeling and prediction methodologies for composites and their use in practice. In this new edition, existing chapters are fully updated, while new chapters are introduced to cover the most recent developments in the field. The use of composites is growing in structural applications in many industries, including aerospace, marine, wind turbine and civil engineering. However, there are uncertainties about their long-term performance, including performance issues relating to cyclic fatigue loading that hinder the adoption of a commonly accepted credible fatigue design methodology for the life prediction of composite engineering structures. With its distinguished editor and international team of contributors, this book is a standard reference for industry professionals and researchers alike. - Examines past, present and future trends associated with the fatigue life prediction of composite materials and structures - Assesses novel computational methods for fatigue life modeling and prediction of composite materials under constant amplitude loading - Covers a wide range of techniques for predicting fatigue, including their theoretical background and practical applications - Addresses new topics and covers contemporary research developments in the field

Fatigue Strength of Welded Structures

Fatigue Strength of Welded Structures
Author: S J Maddox
Publisher: Woodhead Publishing
Total Pages: 216
Release: 1991-01-15
Genre: Technology & Engineering
ISBN: 9781855730137

This new edition encompasses the latest research and particularly the recent standards. The text will be of value to welding engineers and designers, medium to large companies and technical libraries.

Mechanics of Fatigue

Mechanics of Fatigue
Author: Vladimir V. Bolotin
Publisher: CRC Press
Total Pages: 210
Release: 1999-06-24
Genre: Science
ISBN: 9780849396632

Mechanics of Fatigue addresses the range of topics concerning damage, fatigue, and fracture of engineering materials and structures. The core of this resource builds upon the synthesis of micro- and macro-mechanics of fracture. In micromechanics, both the modeling of mechanical phenomena on the level of material structure and the continuous approach are based on the use of certain internal field parameters characterizing the dispersed micro-damage. This is referred to as continuum damage mechanics. The author develops his own theory for macromechanics, called analytical fracture mechanics. This term means the system cracked body - loading or loading device - is considered as a mechanical system and the tools of analytical (rational) mechanics are applied thoroughly to describe crack propagation until the final failure. Chapter discuss: preliminary information on fatigue and engineering methods for design of machines and structures against failures caused by fatigue fatigue crack nucleation, including microstructural and continuous models theory of fatigue crack propagation fatigue crack growth in linear elastic materials subject to dispersed damage fatigue cracks in elasto-plastic material, including crack growth retardation due to overloading as well as quasistationary approximation fatigue and related phenomena in hereditary solids application of the theory fatigue crack growth considering environmental factors unidirectional fiber composites with ductile matrix and brittle, initially continuous fibers laminate composites Mechanics of Fatigue serves students dealing with mechanical aspects of fatigue, conducting research in fracture mechanics, structural safety, mechanics of composites, as well as modern branches of mechanics of solids and structures.