Extracellular Matrix For Cardiovascular Reconstruction
Download Extracellular Matrix For Cardiovascular Reconstruction full books in PDF, epub, and Kindle. Read online free Extracellular Matrix For Cardiovascular Reconstruction ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Steve Bibevski |
Publisher | : Frontiers Media SA |
Total Pages | : 94 |
Release | : 2021-06-01 |
Genre | : Medical |
ISBN | : 288966838X |
Topic editor Robert G. Matheny is employed by company CorMatrix Inc.. All other topic editors declare no competing interests with regards to the Research Topic subject.
Author | : Eric G. Schmuck |
Publisher | : Springer |
Total Pages | : 252 |
Release | : 2018-09-20 |
Genre | : Science |
ISBN | : 3319974211 |
This book on cardiac extracellular matrix (ECM) features three sections, Fundamental Science, Pre-Clinical and Translational Science, and Clinical Applications. In the Fundamental Science section, we will cover the spectrum of basic ECM science from ECM’s role in development, biomechanical properties, cardiac ECM influence of cardiomyocyte biology, pathophysiology of ECM in heart disease, and ECM in tissue engineering. Section two, Preclinical and Translational Science, will discuss cardiac ECM technologies in the clinical pipeline including approaches to ECM as a therapeutic, animal models of cardiac research, tracking and imaging methods of cardiac ECM, and cGMP manufacturing and regulatory considerations for ECM based therapeutics. Finally, the third section, Clinical Applications, will highlight the clinical experience around cardiac ECM including therapeutic strategies targeting scar tissue in the heart, Clinical trial design and regulatory considerations, current human clinical trials in cardiovascular medicine and the role of pharmaceutical and biotech companies in the commercialization of ECM technologies for cardiovascular indications. This book provides a comprehensive review for basic and translational researchers as well as clinical practitioners and those involved in commercialization, regulatory and entrepreneurial activities.
Author | : Milica Radisic |
Publisher | : Humana Press |
Total Pages | : 0 |
Release | : 2014-07-29 |
Genre | : Science |
ISBN | : 9781493910465 |
Cardiac Tissue Engineering: Methods and Protocols presents a collection of protocols on cardiac tissue engineering from pioneering and leading researchers around the globe. These include methods and protocols for cell preparation, biomaterial preparation, cell seeding, and cultivation in various systems. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and key tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Cardiac Tissue Engineering: Methods and Protocols highlights the major techniques, both experimental and computational, for the study of cardiovascular tissue engineering.
Author | : Vahid Serpooshan |
Publisher | : Springer |
Total Pages | : 242 |
Release | : 2019-06-29 |
Genre | : Medical |
ISBN | : 3030200477 |
This book is a comprehensive and up-to-date resource on the use of regenerative medicine for the treatment of cardiovascular disease. It provides a much-needed review of the rapid development and evolution of bio-fabrication techniques to engineer cardiovascular tissues as well as their use in clinical settings. The book incorporates recent advances in the biology, biomaterial design, and manufacturing of bioengineered cardiovascular tissue with their clinical applications to bridge the basic sciences to current and future cardiovascular treatment. The book begins with an examination of state-of-the-art cellular, biomaterial, and macromolecular technologies for the repair and regeneration of diseased heart tissue. It discusses advances in nanotechnology and bioengineering of cardiac microtissues using acoustic assembly. Subsequent chapters explore the clinical applications and translational potential of current technologies such as cardiac patch-based treatments, cell-based regenerative therapies, and injectable hydrogels. The book examines how these methodologies are used to treat a variety of cardiovascular diseases including myocardial infarction, congenital heart disease, and ischemic heart injuries. Finally, the volume concludes with a summary of the most prominent challenges and perspectives on the field of cardiovascular tissue engineering and clinical cardiovascular regenerative medicine. Cardiovascular Regenerative Medicine is an essential resource for physicians, residents, fellows, and medical students in cardiology and cardiovascular regeneration as well as clinical and basic researchers in bioengineering, nanomaterial and technology, and cardiovascular biology.
Author | : Abdol-Mohammad Kajbafzadeh |
Publisher | : Springer Nature |
Total Pages | : 266 |
Release | : 2021-09-28 |
Genre | : Medical |
ISBN | : 3030827356 |
This contributed volume is the first of a series that introduces safe, feasible, and practical decellularization and recellularization techniques for tissue and organ reconstruction. We have put special emphasis on the research areas most likely to develop well-engineered scaffolds for tissue and organ engineering, while presenting easily applicable bench-to-bedside approaches highlighting the latest technical innovations in the field. This book includes both a fundamental discussion for a broad understanding of the basis of tissue repair and substitution, as well as chapters written by world renowned specialists from 20 countries providing deeper discussions and analysis of related sub disciplines. Within these pages, the reader will find state-of-the-art protocols and current clinical challenges in cell and tissue biology, including accurate and comprehensive information on extracellular matrices, natural biomaterials, tissue dynamics, morphogenesis, stem cells, cellular fate progressions, cell and tissue properties for in-vitro and in-vivo applications. This comprehensive and carefully organized treatise provides a clear framework for graduate students and postdoctoral researchers new to the field, but also for researchers and practitioners looking to expand their knowledge on tissue and organ reconstruction.
Author | : Elena Aikawa |
Publisher | : BoD – Books on Demand |
Total Pages | : 544 |
Release | : 2013-06-12 |
Genre | : Medical |
ISBN | : 9535111507 |
Due to population aging, calcific aortic valve disease (CAVD) has become the most common heart valve disease in Western countries. No therapies exist to slow this disease progression, and surgical valve replacement is the only effective treatment. Calcific Aortic Valve Disease covers the contemporary understanding of basic valve biology and the mechanisms of CAVD, provides novel insights into the genetics, proteomics, and metabolomics of CAVD, depicts new strategies in heart valve tissue engineering and regenerative medicine, and explores current treatment approaches. As we are on the verge of understanding the mechanisms of CAVD, we hope that this book will enable readers to comprehend our current knowledge and focus on the possibility of preventing disease progression in the future.
Author | : William S. Pietrzak |
Publisher | : Springer Science & Business Media |
Total Pages | : 647 |
Release | : 2008-04-11 |
Genre | : Medical |
ISBN | : 1597452394 |
The repair of musculoskeletal tissue is a vital concern of all surgical specialties, orthopedics and related disciplines. Written by recognized experts, this book aims to provide both basic and advanced knowledge of the newer methodologies being developed and introduced to the clinical arena. A valuable resource for researchers, developers, and clinicians, the book presents a foundation to propel the technology and integration of the current state of knowledge into the 21st century.
Author | : Song Li |
Publisher | : World Scientific |
Total Pages | : 473 |
Release | : 2011 |
Genre | : Science |
ISBN | : 9814317055 |
Tissue engineering integrates knowledge and tools from biological sciences and engineering for tissue regeneration. A challenge for tissue engineering is to identify appropriate cell sources. The recent advancement of stem cell biology provides enormous opportunities to engineer stem cells for tissue engineering. The impact of stem cell technology on tissue engineering will be revolutionary. This book covers state-of-the-art knowledge on the potential of stem cells for the regeneration of a wide range of tissues and organs and the technologies for studying and engineering stem cells. It serves as a valuable reference book for researchers and students.
Author | : Smadar Cohen |
Publisher | : Springer Nature |
Total Pages | : 190 |
Release | : 2022-06-01 |
Genre | : Science |
ISBN | : 3031025849 |
Cardiac tissue engineering aims at repairing damaged heart muscle and producing human cardiac tissues for application in drug toxicity studies. This book offers a comprehensive overview of the cardiac tissue engineering strategies, including presenting and discussing the various concepts in use, research directions and applications. Essential basic information on the major components in cardiac tissue engineering, namely cell sources and biomaterials, is firstly presented to the readers, followed by a detailed description of their implementation in different strategies, broadly divided to cellular and acellular ones. In cellular approaches, the biomaterials are used to increase cell retention after implantation or as scaffolds when bioengineering the cardiac patch, in vitro. In acellular approaches, the biomaterials are used as ECM replacement for damaged cardiac ECM after MI, or, in combination with growth factors, the biomaterials assume an additional function as a depot for prolonged factor activity for the effective recruitment of repairing cells. The book also presents technological innovations aimed to improve the quality of the cardiac patches, such as bioreactor applications, stimulation patterns and prevascularization. This book could be of interest not only from an educational perspective (i.e. for graduate students), but also for researchers and medical professionals, to offer them fresh views on novel and powerful treatment strategies. We hope that the reader will find a broad spectrum of ideas and possibilities described in this book both interesting and convincing. Table of Contents: Introduction / The Heart: Structure, Cardiovascular Diseases, and Regeneration / Cell Sources for Cardiac Tissue Engineering / Biomaterials: Polymers, Scaffolds, and Basic Design Criteria / Biomaterials as Vehicles for Stem Cell Delivery and Retention in the Infarct / Bioengineering of Cardiac Patches, In Vitro / Perfusion Bioreactors and Stimulation Patterns in Cardiac Tissue Engineering / Vascularization of Cardiac Patches / Acellular Biomaterials for Cardiac Repair / Biomaterial-based Controlled Delivery of Bioactive Molecules for Myocardial Regeneration
Author | : Ian M.C. Dixon |
Publisher | : Springer |
Total Pages | : 437 |
Release | : 2015-06-29 |
Genre | : Science |
ISBN | : 3319174371 |
The unique biology of cardiac fibroblasts and related cells, such as cardiac myofibroblasts and valvular interstitial cells, distinguish them from other fibroblastic cells, a concept that is only beginning to be widely appreciated. Further, the natural signals that stimulate and inhibit cardiac fibrosis within these cells are not well understood. This volume compiles articles that address the molecular mechanisms that control the synthesis and secretion of the cardiac ECM. The book showcases chapters that highlight discussion of role of Transforming Growth Factor β (TGFβ), an important fibrogenic cytokine and its downstream effectors SMAD in many cardiac diseases. Further, the contributions highlight information to discuss endogenous inhibitors of cardiac fibrosis, as well as advances in tissue engineering specific to matrix in the heart. Finally, discussions of unifying mechanisms of matrix remodeling in valves and myocardium are presented. The mechanisms involved in the stimulation of cardiac fibrosis are not fully understood. In most cases the marginal attenuation of cardiac fibrosis as a result of a given therapy is a beneficial side-effect linked to other primary effects on other cells, especially cardiomyocytes. Very few drugs or agents are known to affect the function and dysfunction of cardiac fibroblasts and myofibroblasts alone. The book helps to translate the information gathered within to allow us to alter the course of fibrogenic events that are typical of cardiac fibrosis, and thereby reduce their burden on the patient and on society itself.