Extracellular Enzymes In Aquatic Environments Exploring The Link Between Genomic Potential And Biogeochemical Consequences
Download Extracellular Enzymes In Aquatic Environments Exploring The Link Between Genomic Potential And Biogeochemical Consequences full books in PDF, epub, and Kindle. Read online free Extracellular Enzymes In Aquatic Environments Exploring The Link Between Genomic Potential And Biogeochemical Consequences ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Maria Montserrat Sala |
Publisher | : Frontiers Media SA |
Total Pages | : 159 |
Release | : 2019-09-19 |
Genre | : |
ISBN | : 2889630048 |
Microbial extracellular enzymes are fundamental to the cycling of elements in aquatic systems. The regulation of these enzymatic reactions in oceans, lakes and streams is under complex multiple control by environmental factors and the metabolic capacities of different taxa and communities. While the environmental control of enzyme-mediated processes has been investigated for over 100 years, in recent years tremendous progress in techniques to characterize the metabolic potential of microbial communities (“omics” techniques) has been made, such as high-throughput sequencing and new analytical algorithms. This book explores the controls, activities, and biogeochemical consequences of enzymes in aquatic environments. It brings together experimental studies and fieldwork conducted with natural microbial communities in marine and freshwater ecosystems as well as physiological, biochemical and molecular studies on microbial communities in these environments, or species isolated from them. Additionally, the book contributes to the ongoing debate on the impact of anthropogenic climate change and pollution on microbes, extracellular enzymes and substrate turnover.
Author | : Lesley Clementson |
Publisher | : Elsevier |
Total Pages | : 614 |
Release | : 2021-12-08 |
Genre | : Science |
ISBN | : 0128230290 |
Phytoplankton ecology has developed from an understanding of taxonomy, species dynamics and functional roles, and species interactions with the surrounding environment. New and emerging technologies enable a paradigm shift in the ways we monitor and understand phytoplankton in a range of environments. Advances in Phytoplankton Ecology: Applications of Emerging Technologies is a practical guide to these new technologies and explores their application with case studies to show how recent advances have changed our understanding of phytoplankton ecology.Part one of this book explores how traditional taxonomy and species identification has changed, moving from morphological to molecular techniques. Part two explores the new technologies for remote and automatic monitoring and sensor technology and applications for management. Part three explores the explosion of omics techniques and their application in species identification, functional populations, trait characterization, interspecific interactions, and interaction with their environment.This book is an invaluable guide for marine and freshwater ecology researchers to how new technologies can enhance our understanding of ecology. - Combines traditional techniques with new technologies and methods - Explores the influence of new technology on our understanding of phytoplankton ecology - Provides practical applications of each technique through case studies in each chapter
Author | : Naga Raju Maddela |
Publisher | : Springer Nature |
Total Pages | : 451 |
Release | : 2022-11-10 |
Genre | : Science |
ISBN | : 9811901554 |
This contributed volume compiles the latest developments in the field of microbial enzymology. It focuses on topics such as distribution of microbial enzymes in natural habitats, microbial enzymes in environmental sustainability, and environmental disturbances on microbial enzymes, which are organized into three parts, respectively. Ranging from micro-scale studies to macro, it covers a huge domain of microbial enzymes and their interplay between the components of the environment. Overall, the book portrays the importance of microbial enzyme technology and its role in solving the problems in modern-day life. The book is a ready reference for practicing students and researchers in environmental engineering, chemical engineering, agricultural engineering, and other allied fields.
Author | : Ryszard J. Chrost |
Publisher | : Springer Science & Business Media |
Total Pages | : 333 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 146123090X |
Organic matter in aquatic environments consists mostly of large compounds which cannot be taken up and utilized directly by microbial cells. Prior to incorporation, polymeric materials undergo degradation by cell-bound and extracellular enzymes produced by these microbes; in fact, such enzymatic mobilization and transformation is the key process which regulates the turnover of organic as well as inorganic compounds in aquatic environments. This volume brings together studies on enzymatic degradation processes from disciplines as diverse as water and sediment research, bacterial and algal aquatic ecophysiology, eutrophication, and nutrient cycling and biogeochemistry, in both freshwater and marine ecosystems. Its scope extends from fundamental research exploring the contribution of microbial enzymatic processes to whole ecosystem functioning to practical applications in water biotechnology. The first comprehensive publication providing an overview of this emerging field of enzymology, Microbial Enzymes in Aquatic Environments will be of great interest to ecologists and microbiologists alike.
Author | : Binod Parameswaran |
Publisher | : Springer |
Total Pages | : 451 |
Release | : 2018-11-03 |
Genre | : Technology & Engineering |
ISBN | : 9811332630 |
This volume discusses recent advancements to the age old practice of using microbial enzymes in the preparation of food. Written by leading experts in the field, it discusses novel enzymes and their applications in the industrial preparation of food to improve taste and texture, while reducing cost and increasing consistency. This book will be of interest to both researchers and students working in food technology.
Author | : Sesan Abiodun Aransiola |
Publisher | : Springer Nature |
Total Pages | : 404 |
Release | : |
Genre | : |
ISBN | : 3031689119 |
Author | : Andreas Teske |
Publisher | : Frontiers Media SA |
Total Pages | : 305 |
Release | : 2015-07-01 |
Genre | : Microbiology |
ISBN | : 2889195368 |
Deep subsurface microbiology is a highly active and rapidly advancing research field at the interface of microbiology and the geosciences; it focuses on the detection, identification, quantification, cultivation and activity measurements of bacteria, archaea and eukaryotes that permeate the subsurface biosphere of deep marine sediments and the basaltic ocean and continental crust. The deep subsurface biosphere abounds with uncultured, only recently discovered and – at best - incompletely understood microbial populations. In spatial extent and volume, Earth's subsurface biosphere is only rivaled by the deep sea water column. So far, no deep subsurface sediment has been found that is entirely devoid of microbial life; microbial cells and DNA remain detectable at sediment depths of more than 1 km; microbial life permeates deeply buried hydrocarbon reservoirs, and is also found several kilometers down in continental crust aquifers. Severe energy limitation, either as electron acceptor or donor shortage, and scarcity of microbially degradable organic carbon sources are among the evolutionary pressures that have shaped the genomic and physiological repertoire of the deep subsurface biosphere. Its biogeochemical role as long-term organic carbon repository, inorganic electron and energy source, and subduction recycling engine continues to be explored by current research at the interface of microbiology, geochemistry and biosphere/geosphere evolution. This Research Topic addresses some of the central research questions about deep subsurface microbiology and biogeochemistry: phylogenetic and physiological microbial diversity in the deep subsurface; microbial activity and survival strategies in severely energy-limited subsurface habitats; microbial activity as reflected in process rates and gene expression patterns; biogeographic isolation and connectivity in deep subsurface microbial communities; the ecological standing of subsurface biospheres in comparison to the surface biosphere – an independently flourishing biosphere, or mere survivors that tolerate burial (along with organic carbon compounds), or a combination of both? Advancing these questions on Earth’s deep subsurface biosphere redefines the habitat range, environmental tolerance, activity and diversity of microbial life.
Author | : Thomas S. Bianchi |
Publisher | : Princeton University Press |
Total Pages | : 417 |
Release | : 2011-02-28 |
Genre | : Science |
ISBN | : 1400839106 |
This textbook provides a unique and thorough look at the application of chemical biomarkers to aquatic ecosystems. Defining a chemical biomarker as a compound that can be linked to particular sources of organic matter identified in the sediment record, the book indicates that the application of these biomarkers for an understanding of aquatic ecosystems consists of a biogeochemical approach that has been quite successful but underused. This book offers a wide-ranging guide to the broad diversity of these chemical biomarkers, is the first to be structured around the compounds themselves, and examines them in a connected and comprehensive way. This timely book is appropriate for advanced undergraduate and graduate students seeking training in this area; researchers in biochemistry, organic geochemistry, and biogeochemistry; researchers working on aspects of organic cycling in aquatic ecosystems; and paleoceanographers, petroleum geologists, and ecologists. Provides a guide to the broad diversity of chemical biomarkers in aquatic environments The first textbook to be structured around the compounds themselves Describes the structure, biochemical synthesis, analysis, and reactivity of each class of biomarkers Offers a selection of relevant applications to aquatic systems, including lakes, rivers, estuaries, oceans, and paleoenvironments Demonstrates the utility of using organic molecules as tracers of processes occurring in aquatic ecosystems, both modern and ancient
Author | : Jürgen Overbeck |
Publisher | : Springer Science & Business Media |
Total Pages | : 200 |
Release | : 2012-12-06 |
Genre | : Science |
ISBN | : 1461233828 |
Aquatic microbial ecology, a growing interdisciplinary field, has become increasingly compartmentalized in recent years. The aim of this volume is to propose a framework for biochemical and molecular approaches, which are employed ever more widely in studies of aquatic microbial communities and ecosystem functioning. The book presents state of the art applications of modern molecular research techniques to a range of topics in ectoenzymes microbial carbon metabolism bacterial population dynamics RNA chemotaxonomy of microbial communities plasmids and adaptation to environmental conditions. Written for limnologists, marine biologists, and all researchers interested in environmental microbiology and molecular aspects of ecology, this volume will provide a stimulating introduction to this emerging field.
Author | : Richard G. Burns |
Publisher | : CRC Press |
Total Pages | : 740 |
Release | : 2002-01-29 |
Genre | : Science |
ISBN | : 0824744209 |
The need to understand the biological processes that are important for essential aquatic and terrestrial ecosystem function has prompted much research into the field of ecological enzymology. This book presents the two broad areas of application in a compilation of reviews by 21 international experts in their respective fields. The first explores enzymatic activities to assess the processes or mechanisms that operate in a given system, such as the rhizosphere, plant leaves and shoots, soil surfaces, and biofilms. The second considers enzymes or microbial cells as sensors to detect microbial activity and stresses due to pollution, management, or climatic change in both aquatic and terrestrial ecosystems.