Extending Intersection Homology Type Invariants to Non-Witt Spaces

Extending Intersection Homology Type Invariants to Non-Witt Spaces
Author: Markus Banagl
Publisher: American Mathematical Soc.
Total Pages: 101
Release: 2002
Genre: Mathematics
ISBN: 0821829882

Intersection homology theory provides a way to obtain generalized Poincare duality, as well as a signature and characteristic classes, for singular spaces. For this to work, one has had to assume however that the space satisfies the so-called Witt condition. We extend this approach to constructing invariants to spaces more general than Witt spaces.

Singular Intersection Homology

Singular Intersection Homology
Author: Greg Friedman
Publisher: Cambridge University Press
Total Pages: 823
Release: 2020-09-24
Genre: Mathematics
ISBN: 1107150744

The first expository book-length introduction to intersection homology from the viewpoint of singular and piecewise linear chains.

Intersection Homology & Perverse Sheaves

Intersection Homology & Perverse Sheaves
Author: Laurenţiu G. Maxim
Publisher: Springer Nature
Total Pages: 278
Release: 2019-11-30
Genre: Mathematics
ISBN: 3030276449

This textbook provides a gentle introduction to intersection homology and perverse sheaves, where concrete examples and geometric applications motivate concepts throughout. By giving a taste of the main ideas in the field, the author welcomes new readers to this exciting area at the crossroads of topology, algebraic geometry, analysis, and differential equations. Those looking to delve further into the abstract theory will find ample references to facilitate navigation of both classic and recent literature. Beginning with an introduction to intersection homology from a geometric and topological viewpoint, the text goes on to develop the sheaf-theoretical perspective. Then algebraic geometry comes to the fore: a brief discussion of constructibility opens onto an in-depth exploration of perverse sheaves. Highlights from the following chapters include a detailed account of the proof of the Beilinson–Bernstein–Deligne–Gabber (BBDG) decomposition theorem, applications of perverse sheaves to hypersurface singularities, and a discussion of Hodge-theoretic aspects of intersection homology via Saito’s deep theory of mixed Hodge modules. An epilogue offers a succinct summary of the literature surrounding some recent applications. Intersection Homology & Perverse Sheaves is suitable for graduate students with a basic background in topology and algebraic geometry. By building context and familiarity with examples, the text offers an ideal starting point for those entering the field. This classroom-tested approach opens the door to further study and to current research.

Topology of Stratified Spaces

Topology of Stratified Spaces
Author: Greg Friedman
Publisher: Cambridge University Press
Total Pages: 491
Release: 2011-03-28
Genre: Mathematics
ISBN: 052119167X

This book explores the study of singular spaces using techniques from areas within geometry and topology and the interactions among them.

The $AB$ Program in Geometric Analysis: Sharp Sobolev Inequalities and Related Problems

The $AB$ Program in Geometric Analysis: Sharp Sobolev Inequalities and Related Problems
Author: Olivier Druet
Publisher: American Mathematical Soc.
Total Pages: 113
Release: 2002
Genre: Mathematics
ISBN: 0821829890

Function theory and Sobolev inequalities have been the target of investigation for many years. Sharp constants in these inequalities constitute a critical tool in geometric analysis. The $AB$ programme is concerned with sharp Sobolev inequalities on compact Riemannian manifolds. This text summarizes the results of contemporary research and gives an up-to-date report on the field.

Segre's Reflexivity and an Inductive Characterization of Hyperquadrics

Segre's Reflexivity and an Inductive Characterization of Hyperquadrics
Author: Yasuyuki Kachi
Publisher: American Mathematical Soc.
Total Pages: 133
Release: 2002
Genre: Mathematics
ISBN: 0821832255

Introduction The universal pseudo-quotient for a family of subvarieties Normal bundles of quadrics in $X$ Morphisms from quadrics to Grassmannians Pointwise uniform vector bundles on non-singular quadrics Theory of extensions of families over Hilbert schemes Existence of algebraic quotient--proof of Theorem 0.3 Appendix. Deformations of vector bundles on infinitesimally rigid projective varieties with null global $i$-forms References

Abstract Band Method via Factorization, Positive and Band Extensions of Multivariable Almost Periodic Matrix Functions, and Spectral Estimation

Abstract Band Method via Factorization, Positive and Band Extensions of Multivariable Almost Periodic Matrix Functions, and Spectral Estimation
Author: L. Rodman
Publisher: American Mathematical Soc.
Total Pages: 87
Release: 2002
Genre: Mathematics
ISBN: 0821829963

In this work, versions of an abstract scheme are developed, which are designed to provide a framework for solving a variety of extension problems. The abstract scheme is commonly known as the band method. The main feature of the new versions is that they express directly the conditions for existence of positive band extensions in terms of abstract factorizations (with certain additional properties). The results prove, amongst other things, that the band extension is continuous in an appropriate sense.

Singularity Theory: Dedicated To Jean-paul Brasselet On His 60th Birthday - Proceedings Of The 2005 Marseille Singularity School And Conference

Singularity Theory: Dedicated To Jean-paul Brasselet On His 60th Birthday - Proceedings Of The 2005 Marseille Singularity School And Conference
Author: Jean-paul Brasselet
Publisher: World Scientific
Total Pages: 1083
Release: 2007-02-08
Genre: Mathematics
ISBN: 9814476390

The Singularity School and Conference took place in Luminy, Marseille, from January 24th to February 25th 2005. More than 180 mathematicians from over 30 countries converged to discuss recent developments in singularity theory.The volume contains the elementary and advanced courses conducted by singularities specialists during the conference, general lectures on singularity theory, and lectures on applications of the theory to various domains. The subjects range from geometry and topology of singularities, through real and complex singularities, to applications of singularities.

Invariants of Boundary Link Cobordism

Invariants of Boundary Link Cobordism
Author: Desmond Sheiham
Publisher: American Mathematical Soc.
Total Pages: 128
Release: 2003
Genre: Mathematics
ISBN: 0821833405

An $n$-dimensional $\mu$-component boundary link is a codimension $2$ embedding of spheres $L=\sqcup_{\mu}S DEGREESn \subset S DEGREES{n+2}$ such that there exist $\mu$ disjoint oriented embedded $(n+1)$-manifolds which span the components of $L$. This title proceeds to compute the isomorphism class of $C_{