Extended Linear Chain Compounds

Extended Linear Chain Compounds
Author: Joel S. Miller
Publisher: Springer Science & Business Media
Total Pages: 491
Release: 2013-11-11
Genre: Mathematics
ISBN: 1461332494

Linear chain substances span a large cross section of contemporary chemistry ranging from covalent polymers, to organic charge transfer com plexes to nonstoichiometric transition metal coordination complexes. Their commonality, which coalesced intense interest in the theoretical and exper imental solid state physics/chemistry communities, was based on the obser vation that these inorganic and organic polymeric substrates exhibit striking metal-like electrical and optical properties. Exploitation and extension of these systems has led to the systematic study of both the chemistry and physics of highly and poorly conducting linear chain substances. To gain a salient understanding of these complex materials rich in anomalous aniso tropic electrical, optical, magnetic, and mechanical properties, the conver gence of diverse skills and talents was required. The constructive blending of traditionally segregated disciplines such as synthetic and physical organic, inorganic, and polymer chemistry, crystallography, and theoretical and ex perimental solid state physics has led to the timely development of a truly interdisciplinary science. This is evidenced in the contributions of this monograph series. Within the theme of Extended Linear Chain Compounds, experts in important, but varied, facets of the discipline have reflected upon the progress that has been made and have cogently summarized their field of specialty. Consequently, up-to-date reviews of numerous and varied aspects of "extended linear chain compounds" have developed. Within these vol umes, numerous incisive contributions covering all aspects of the diverse linear chain substances have been summarized.

Extended Linear Chain Compounds

Extended Linear Chain Compounds
Author: Joel S. Miller
Publisher: Springer Science & Business Media
Total Pages: 569
Release: 2012-12-06
Genre: Mathematics
ISBN: 1468441752

Linear chain substances span a large cross section of contemporary chemis try ranging from covalent polymers, organic charge transfer complexes to nonstoichiometric transition metal coordination complexes. Their common ality, which coalesced intense interest in the theoretical and experimental solid-state-physics/chemistry communities, was based on the observation that these inorganic and organic polymeric substrates exhibit striking metal-like electrical and optical properties. Exploitation and extension of these systems has led to the systematic study of both the chemistry and physics of highly and poorly conducting linear chain substances. To gain a salient understanding of these complex materials rich in anomalous anisotropic electrical, optical, magnetic, and mechanical properties, the convergence of diverse skills and talents was required. The constructive blending of traditionally segregated disciplines such as synthetic and physical organic, inorganic, and polymer chemistry, crystallography, and theoretical and experimental solid state physics has led to the timely devel opment of a truly interdisciplinary science. This is evidenced in the contri butions of this monograph series. Within the theme of Extended Linear Chain Compounds, experts in important, but varied, facets of the discipline have reflected upon the progress that has been made and have cogently summarized their field of specialty. Consequently, up-to-date reviews of numerous and varied aspects of "extended linear chain compounds" has developed. Within these volumes, numerous incisive contributions covering all aspects of the diverse linear chain substances have been summarized. I am confident that assimilation of the state-of-the-art and clairvoy ance will be rewarded with extraordinary developments in the near future.

Extended Linear Chain Compounds

Extended Linear Chain Compounds
Author: Joel S. Miller
Publisher: Springer
Total Pages: 580
Release: 2012-03-28
Genre: Mathematics
ISBN: 9781468441772

Linear chain substances span a large cross section of contemporary chemis try ranging from covalent polymers, organic charge transfer complexes to nonstoichiometric transition metal coordination complexes. Their common ality, which coalesced intense interest in the theoretical and experimental solid-state-physics/chemistry communities, was based on the observation that these inorganic and organic polymeric substrates exhibit striking metal-like electrical and optical properties. Exploitation and extension of these systems has led to the systematic study of both the chemistry and physics of highly and poorly conducting linear chain substances. To gain a salient understanding of these complex materials rich in anomalous anisotropic electrical, optical, magnetic, and mechanical properties, the convergence of diverse skills and talents was required. The constructive blending of traditionally segregated disciplines such as synthetic and physical organic, inorganic, and polymer chemistry, crystallography, and theoretical and experimental solid state physics has led to the timely devel opment of a truly interdisciplinary science. This is evidenced in the contri butions of this monograph series. Within the theme of Extended Linear Chain Compounds, experts in important, but varied, facets of the discipline have reflected upon the progress that has been made and have cogently summarized their field of specialty. Consequently, up-to-date reviews of numerous and varied aspects of "extended linear chain compounds" has developed. Within these volumes, numerous incisive contributions covering all aspects of the diverse linear chain substances have been summarized. I am confident that assimilation of the state-of-the-art and clairvoy ance will be rewarded with extraordinary developments in the near future.

Extended Linear Chain Compounds

Extended Linear Chain Compounds
Author: Joel S. Miller
Publisher: Springer
Total Pages: 0
Release: 1982-04-14
Genre: Mathematics
ISBN: 9781468439328

Linear chain substances span a large cross section of contemporary chemistry ranging from covalent polymers, to organic charge transfer com plexes to nonstoichiometric transition metal coordination complexes. Their commonality, which coalesced intense interest in the theoretical and exper imental solid state physics/chemistry communities, was based on the obser vation that these inorganic and organic polymeric substrates exhibit striking metal-like elec,trical and optical properties. Exploitation and extension of these systems has led to the systematic study of both the chemistry and physics of highly and poorly conducting linear chain substances. To gain a salient understanding of these complex materials rich in anomalous aniso tropic electrical, optical, magnetic, and mechanical properties, the conver gence of diverse skills and talents was required. The constructive blending of traditionally segregated disciplines such as synthetic and physical organic, inorganic, and polymer chemistry, crystallography, and theoretical and ex perimental solid state physics has led to the timely development of a truly interdisciplinary science. This is evidenced in the contributions of this monograph series. Within the theme of Extended Linear Chain Compounds, experts in important, but varied, facets of the discipline have reflected upon the progress that has been made and have cogently summarized their field of speciality. Consequently, up-to-date reviews of numerous and varied aspects of "extended linear chain compounds" have developed. Within these vol umes, numerous incisive contributions covering all aspects of the diverse linear chain substances have been summarized.

Inorganic Reactions and Methods, The Formation of Bonds to Transition and Inner-Transition Metals

Inorganic Reactions and Methods, The Formation of Bonds to Transition and Inner-Transition Metals
Author: A. P. Hagen
Publisher: John Wiley & Sons
Total Pages: 727
Release: 2009-09-17
Genre: Science
ISBN: 0470145501

Boasting numerous industrial applications, inorganic chemistry forms the basis for research into new materials and bioinorganic compounds such as calcium that act as biological catalysts. Now complete, this highly acclaimed series presents current knowledge in all areas of inorganic chemistry, including chemistry of the elements; organometallic, polymeric and solid-state materials; and compounds relevant to bioinorganic chemistry.

Material Designs and New Physical Properties in MX- and MMX-Chain Compounds

Material Designs and New Physical Properties in MX- and MMX-Chain Compounds
Author: Masahiro Yamashita
Publisher: Springer Science & Business Media
Total Pages: 275
Release: 2012-12-13
Genre: Science
ISBN: 3709113172

This is the first book to comprehensively address the recent developments in both the experimental and theoretical aspects of quasi-one-dimensional halogen-bridged mono- (MX) and binuclear metal (MMX) chain complexes of Pt, Pd and Ni. These complexes have one-dimensional electronic structures, which cause the various physical properties as well as electronic structures. In most MX-chain complexes, the Pt and Pd units are in M(II)-M(IV) mixed valence or charge density wave (CDW) states due to electron-phonon interactions, and Ni compounds are in Ni(III) averaged valence or Mott-Hubbard states due to the on-site Coulomb repulsion. More recently, Pd(III) Mott-Hubbard (MH) states have been realized in the ground state by using the chemical pressure. Pt and Pd chain complexes undergo photo-induced phase transitions from CDW to MH or metal states, and Ni chain complexes undergo photo-induced phase transitions from MH to metal states. Ni chain complexes with strong electron correlations show tremendous third-order optical nonlinearity and nonlinear electrical conductivities. They can be explained theoretically by using the extended Peierls-Hubbard model. For MMX-chain complexes, averaged valence, CDW, charge polarization, and alternating charge polarization states have been realized by using chemical modification and external stimuli, such as temperature, photo-irradiation, pressure, and water vapor. All of the electronic structures and phase transitions can be explained theoretically.