Exponential Attractors for Dissipative Evolution Equations

Exponential Attractors for Dissipative Evolution Equations
Author: A. Eden
Publisher:
Total Pages: 200
Release: 1994
Genre: Mathematics
ISBN:

Covering a pioneering area of dynamical systems, this monograph includes references, Navier-Stokes equations and many applications which should be of particular interest to those working in the field of fluid mechanics.

Exponential Attractors for Dissipative Evolution Equations

Exponential Attractors for Dissipative Evolution Equations
Author: Alp Eden
Publisher: Elsevier Masson
Total Pages: 182
Release: 1994
Genre: Differentiable dynamical systems
ISBN: 9782225843068

Exponentiol Attractors is a new area of Dynamical Systems, pioneered to a large extent by the authors of this book. Their aim was to develop and present the theory of Exponentiol Attractors for Dissipative Evolutîon Equations, mostly of infinite dimension. Exponentiol Attractors represent "realistic" abjects intermediate between the two "ideal" ones which are the global Attractors and the Inertiel Manifolds. All three abjects describe the long time behaviour of dynamical systems. The book is written in the style of a text appropriate for a graduate courses. With its applications, for example, ta Novier-Stokes equations as well as ta many other related partial differential equations of mathematical physics, this work is of particular interest ta those interested in the connections between fluid mechanics, partial differential equations and dynamical systems.

Attractors for Semigroups and Evolution Equations

Attractors for Semigroups and Evolution Equations
Author: Olga A. Ladyzhenskaya
Publisher: Cambridge University Press
Total Pages:
Release: 2022-06-09
Genre: Mathematics
ISBN: 1009229796

In this volume, Olga A. Ladyzhenskaya expands on her highly successful 1991 Accademia Nazionale dei Lincei lectures. The lectures were devoted to questions of the behaviour of trajectories for semigroups of nonlinear bounded continuous operators in a locally non-compact metric space and for solutions of abstract evolution equations. The latter contain many initial boundary value problems for dissipative partial differential equations. This work, for which Ladyzhenskaya was awarded the Russian Academy of Sciences' Kovalevskaya Prize, reflects the high calibre of her lectures; it is essential reading for anyone interested in her approach to partial differential equations and dynamical systems. This edition, reissued for her centenary, includes a new technical introduction, written by Gregory A. Seregin, Varga K. Kalantarov and Sergey V. Zelik, surveying Ladyzhenskaya's works in the field and subsequent developments influenced by her results.

Handbook of Differential Equations: Evolutionary Equations

Handbook of Differential Equations: Evolutionary Equations
Author: C.M. Dafermos
Publisher: Elsevier
Total Pages: 609
Release: 2008-10-06
Genre: Mathematics
ISBN: 0080931979

The material collected in this volume discusses the present as well as expected future directions of development of the field with particular emphasis on applications. The seven survey articles present different topics in Evolutionary PDE's, written by leading experts.- Review of new results in the area- Continuation of previous volumes in the handbook series covering Evolutionary PDEs- Written by leading experts

Abstract Parabolic Evolution Equations and their Applications

Abstract Parabolic Evolution Equations and their Applications
Author: Atsushi Yagi
Publisher: Springer Science & Business Media
Total Pages: 594
Release: 2009-11-03
Genre: Mathematics
ISBN: 3642046312

This monograph is intended to present the fundamentals of the theory of abstract parabolic evolution equations and to show how to apply to various nonlinear dif- sion equations and systems arising in science. The theory gives us a uni?ed and s- tematic treatment for concrete nonlinear diffusion models. Three main approaches are known to the abstract parabolic evolution equations, namely, the semigroup methods, the variational methods, and the methods of using operational equations. In order to keep the volume of the monograph in reasonable length, we will focus on the semigroup methods. For other two approaches, see the related references in Bibliography. The semigroup methods, which go back to the invention of the analytic se- groups in the middle of the last century, are characterized by precise formulas representing the solutions of the Cauchy problem for evolution equations. The ?tA analytic semigroup e generated by a linear operator ?A provides directly a fundamental solution to the Cauchy problem for an autonomous linear e- dU lution equation, +AU =F(t), 0

Attractors of Evolution Equations

Attractors of Evolution Equations
Author: A.V. Babin
Publisher: Elsevier
Total Pages: 543
Release: 1992-03-09
Genre: Mathematics
ISBN: 0080875467

Problems, ideas and notions from the theory of finite-dimensional dynamical systems have penetrated deeply into the theory of infinite-dimensional systems and partial differential equations. From the standpoint of the theory of the dynamical systems, many scientists have investigated the evolutionary equations of mathematical physics. Such equations include the Navier-Stokes system, magneto-hydrodynamics equations, reaction-diffusion equations, and damped semilinear wave equations. Due to the recent efforts of many mathematicians, it has been established that the attractor of the Navier-Stokes system, which attracts (in an appropriate functional space) as t - ∞ all trajectories of this system, is a compact finite-dimensional (in the sense of Hausdorff) set. Upper and lower bounds (in terms of the Reynolds number) for the dimension of the attractor were found. These results for the Navier-Stokes system have stimulated investigations of attractors of other equations of mathematical physics. For certain problems, in particular for reaction-diffusion systems and nonlinear damped wave equations, mathematicians have established the existence of the attractors and their basic properties; furthermore, they proved that, as t - +∞, an infinite-dimensional dynamics described by these equations and systems uniformly approaches a finite-dimensional dynamics on the attractor U, which, in the case being considered, is the union of smooth manifolds. This book is devoted to these and several other topics related to the behaviour as t - ∞ of solutions for evolutionary equations.

Von Karman Evolution Equations

Von Karman Evolution Equations
Author: Igor Chueshov
Publisher: Springer Science & Business Media
Total Pages: 777
Release: 2010-04-08
Genre: Mathematics
ISBN: 0387877126

In the study of mathematical models that arise in the context of concrete - plications, the following two questions are of fundamental importance: (i) we- posedness of the model, including existence and uniqueness of solutions; and (ii) qualitative properties of solutions. A positive answer to the ?rst question, - ing of prime interest on purely mathematical grounds, also provides an important test of the viability of the model as a description of a given physical phenomenon. An answer or insight to the second question provides a wealth of information about the model, hence about the process it describes. Of particular interest are questions related to long-time behavior of solutions. Such an evolution property cannot be v- i?ed empirically, thus any in a-priori information about the long-time asymptotics can be used in predicting an ultimate long-time response and dynamical behavior of solutions. In recent years, this set of investigations has attracted a great deal of attention. Consequent efforts have then resulted in the creation and infusion of new methods and new tools that have been responsible for carrying out a successful an- ysis of long-time behavior of several classes of nonlinear PDEs.

Attractors for Degenerate Parabolic Type Equations

Attractors for Degenerate Parabolic Type Equations
Author: Messoud Efendiev
Publisher: American Mathematical Soc.
Total Pages: 233
Release: 2013-09-26
Genre: Mathematics
ISBN: 1470409852

This book deals with the long-time behavior of solutions of degenerate parabolic dissipative equations arising in the study of biological, ecological, and physical problems. Examples include porous media equations, -Laplacian and doubly nonlinear equations, as well as degenerate diffusion equations with chemotaxis and ODE-PDE coupling systems. For the first time, the long-time dynamics of various classes of degenerate parabolic equations, both semilinear and quasilinear, are systematically studied in terms of their global and exponential attractors. The long-time behavior of many dissipative systems generated by evolution equations of mathematical physics can be described in terms of global attractors. In the case of dissipative PDEs in bounded domains, this attractor usually has finite Hausdorff and fractal dimension. Hence, if the global attractor exists, its defining property guarantees that the dynamical system reduced to the attractor contains all of the nontrivial dynamics of the original system. Moreover, the reduced phase space is really "thinner" than the initial phase space. However, in contrast to nondegenerate parabolic type equations, for a quite large class of degenerate parabolic type equations, their global attractors can have infinite fractal dimension. The main goal of the present book is to give a detailed and systematic study of the well-posedness and the dynamics of the semigroup associated to important degenerate parabolic equations in terms of their global and exponential attractors. Fundamental topics include existence of attractors, convergence of the dynamics and the rate of convergence, as well as the determination of the fractal dimension and the Kolmogorov entropy of corresponding attractors. The analysis and results in this book show that there are new effects related to the attractor of such degenerate equations that cannot be observed in the case of nondegenerate equations in bounded domains. This book is published in cooperation with Real Sociedad Matemática Española (RSME).

Dissipative Lattice Dynamical Systems

Dissipative Lattice Dynamical Systems
Author: Xiaoying Han
Publisher: World Scientific
Total Pages: 381
Release: 2023-03-14
Genre: Mathematics
ISBN: 9811267774

There is an extensive literature in the form of papers (but no books) on lattice dynamical systems. The book focuses on dissipative lattice dynamical systems and their attractors of various forms such as autonomous, nonautonomous and random. The existence of such attractors is established by showing that the corresponding dynamical system has an appropriate kind of absorbing set and is asymptotically compact in some way.There is now a very large literature on lattice dynamical systems, especially on attractors of all kinds in such systems. We cannot hope to do justice to all of them here. Instead, we have focused on key areas of representative types of lattice systems and various types of attractors. Our selection is biased by our own interests, in particular to those dealing with biological applications. One of the important results is the approximation of Heaviside switching functions in LDS by sigmoidal functions.Nevertheless, we believe that this book will provide the reader with a solid introduction to the field, its main results and the methods that are used to obtain them.

Attractors for Equations of Mathematical Physics

Attractors for Equations of Mathematical Physics
Author: Vladimir V. Chepyzhov
Publisher: American Mathematical Soc.
Total Pages: 377
Release: 2002
Genre: Mathematics
ISBN: 0821829505

One of the major problems in the study of evolution equations of mathematical physics is the investigation of the behavior of the solutions to these equations when time is large or tends to infinity. The related important questions concern the stability of solutions or the character of the instability if a solution is unstable. In the last few decades, considerable progress in this area has been achieved in the study of autonomous evolution partial differential equations. For anumber of basic evolution equations of mathematical physics, it was shown that the long time behavior of their solutions can be characterized by a very important notion of a global attractor of the equation. In this book, the authors study new problems related to the theory of infinite-dimensionaldynamical systems that were intensively developed during the last 20 years. They construct the attractors and study their properties for various non-autonomous equations of mathematical physics: the 2D and 3D Navier-Stokes systems, reaction-diffusion systems, dissipative wave equations, the complex Ginzburg-Landau equation, and others. Since, as it is shown, the attractors usually have infinite dimension, the research is focused on the Kolmogorov $\varepsilon$-entropy of attractors. Upperestimates for the $\varepsilon$-entropy of uniform attractors of non-autonomous equations in terms of $\varepsilon$-entropy of time-dependent coefficients are proved. Also, the authors construct attractors for those equations of mathematical physics for which the solution of the corresponding Cauchyproblem is not unique or the uniqueness is not proved. The theory of the trajectory attractors for these equations is developed, which is later used to construct global attractors for equations without uniqueness. The method of trajectory attractors is applied to the study of finite-dimensional approximations of attractors. The perturbation theory for trajectory and global attractors is developed and used in the study of the attractors of equations with terms rapidly oscillating with respect tospatial and time variables. It is shown that the attractors of these equations are contained in a thin neighborhood of the attractor of the averaged equation. The book gives systematic treatment to the theory of attractors of autonomous and non-autonomous evolution equations of mathematical physics.It can be used both by specialists and by those who want to get acquainted with this rapidly growing and important area of mathematics.