Explosion, Shock Wave and High-Energy Reaction Phenomena

Explosion, Shock Wave and High-Energy Reaction Phenomena
Author: Shigeru Itoh
Publisher: Trans Tech Publications Ltd
Total Pages: 316
Release: 2011-01-20
Genre: Technology & Engineering
ISBN: 3038134589

Selected, peer reviewed papers from International Symposium on Explosion, Shock wave & High-energy reaction Phenomena 2010 (3rd ESHP Symposium), 1-3 September 2010, Seoul National University, Seoul, Korea

Explosion, Shock-Wave and High-Strain-Rate Phenomena of Advanced Materials

Explosion, Shock-Wave and High-Strain-Rate Phenomena of Advanced Materials
Author: Kazuyuki Hokamoto
Publisher: Elsevier
Total Pages: 174
Release: 2021-06-14
Genre: Technology & Engineering
ISBN: 0128216654

Materials processing using explosion, shock-wave and high-strain-rate phenomena was developed after WWII, and these explosive forming and welding techniques have since been adopted as an accepted industrial technology. Such extremely high-rate phenomena historically used empirical experiences while the experimental conditions were not well documented due to the difficulties inherent in understanding the real response or behaviour of materials. Based upon the recent development of numerical techniques for analysis and the enriched data available on the behaviour of materials, it is now possible to predict such high-rate phenomena based upon numerical and experimental approaches including optical observation. Explosion, Shock-wave and High-strain-rate Phenomena of Advanced Materials demonstrates the deformation of various materials at high-rate based upon numerical analysis and supported by experimental evidence. The book is recommended for researchers and engineers who would like to learn more about the high-rate effect of materials and those who need to resolve multi-physics problems based on numerical approach. It is also ideal for researchers and engineers interested with explosive and other high-rate processing of materials. Presents numerical techniques on the analysis and enriched data on the behavior of materials based upon a numerical approach Provides case studies to illustrate the various methods discussed Includes mechanical response at high-rates of porous materials

Explosion Shock Waves and High Strain Rate Phenomena

Explosion Shock Waves and High Strain Rate Phenomena
Author: K. Hokamoto
Publisher: Materials Research Forum LLC
Total Pages: 181
Release: 2019-08-20
Genre: Technology & Engineering
ISBN: 1644900335

The book presents the papers presented at the 6th international conference on Explosion, Shock Wave and High Strain-Rate Phenomena (ESHP). Topics covered include: Advanced Manufacturing under Impact/Shock Loading, Detonation of High Pressure Flammable Gas in Closed Spaces, High Strain-Rate Behaviour of Auxetic Cellular Structures, Underwater Shock Waves Generation, Magnetic Pressure Welding of Aluminum Sheets, Shock Synthesis of Zirconium Oxides, Impact Joining of Dissimilar Metals, High-Speed Oblique Collision of Metals, Dynamic Behavior of Dislocation Wall Structures, Tensile Strength of Rock at High Strain Rates, Fiber Reinforced Mortar, Impact Analysis of Carbon Fiber Reinforced Polymer, Explosive Welding , Underwater Explosive Welding , Making Ultrafine Explosives, Aluminum-Steel Explosive Cladding, Explosively Cladded Aluminum Hybrid Composites, Explosive Clads with Interlayers.

Explosion, Shock-Wave and High-Strain-Rate Phenomena of Advanced Materials

Explosion, Shock-Wave and High-Strain-Rate Phenomena of Advanced Materials
Author: Kazuyuki Hokamoto
Publisher: Elsevier
Total Pages: 176
Release: 2021-06-09
Genre: Technology & Engineering
ISBN: 0128232374

Materials processing using explosion, shock-wave and high-strain-rate phenomena was developed after WWII, and these explosive forming and welding techniques have since been adopted as an accepted industrial technology. Such extremely high-rate phenomena historically used empirical experiences while the experimental conditions were not well documented due to the difficulties inherent in understanding the real response or behaviour of materials. Based upon the recent development of numerical techniques for analysis and the enriched data available on the behaviour of materials, it is now possible to predict such high-rate phenomena based upon numerical and experimental approaches including optical observation. Explosion, Shock-wave and High-strain-rate Phenomena of Advanced Materials demonstrates the deformation of various materials at high-rate based upon numerical analysis and supported by experimental evidence. The book is recommended for researchers and engineers who would like to learn more about the high-rate effect of materials and those who need to resolve multi-physics problems based on numerical approach. It is also ideal for researchers and engineers interested with explosive and other high-rate processing of materials. - Presents numerical techniques on the analysis and enriched data on the behavior of materials based upon a numerical approach - Provides case studies to illustrate the various methods discussed - Includes mechanical response at high-rates of porous materials

High-Pressure Shock Compression of Solids VI

High-Pressure Shock Compression of Solids VI
Author: Yasuyuki Horie
Publisher: Springer Science & Business Media
Total Pages: 376
Release: 2003
Genre: Science
ISBN: 9780387955322

Both experimental and theoretical investigations make it clear that mesoscale materials, that is, materials at scales intermediate between atomic and bulk matter, do not always behave in ways predicted by conventional theories of shock compression. At these scales, shock waves interact with local material properties and microstructure to produce a hierarchy of dissipative structures such as inelastic deformation fields, randomly distributed lattice defects, and residual stresses. A macroscopically steady planar shock wave is neither plane nor steady at the mesoscale. The chapters in this book examine the assumptions underlying our understanding of shock phenomena and present new measurements, calculations, and theories that challenge these assumptions. They address such questions as: What are the experimental data on mesoscale effects of shocks, and what are the implications?; Can one formulate new mesoscale theories of shock dynamics?; How would new mesoscale theories affect our understanding of shock-induced phase transitions or fracture?; And what new computational models will be needed for investigating mesoscale shocks?

Explosion, Shock Wave and High-Energy Reaction Phenomena II

Explosion, Shock Wave and High-Energy Reaction Phenomena II
Author: Shigeru Itoh
Publisher: Trans Tech Publications Limited
Total Pages: 0
Release: 2013-07-31
Genre: Technology & Engineering
ISBN: 9783038262077

Selected, peer reviewed papers from the International Symposium on Explosion, Shock Wave and High-Energy Reaction Phenomena 2013 (ESHP Symposium 2013), March 27-29, 2013, Nago, Okinawa, Japan

Explosion Blast Response of Composites

Explosion Blast Response of Composites
Author: Adrian P. Mouritz
Publisher: Woodhead Publishing
Total Pages: 434
Release: 2017-05-22
Genre: Technology & Engineering
ISBN: 0081020937

Explosion Blast Response of Composites contains key information on the effects of explosions, shock waves, and detonation products (e.g. fragments, shrapnel) on the deformation and damage to composites. The book considers the blast response of laminates and sandwich composites, along with blast mitigation of composites (including coating systems and energy absorbing materials). Broken down under the following key themes: Introduction to explosive blast response of composites, Air explosion blast response of composites, Underwater explosion blast response of composites, and High strain rate and dynamic properties of composites, the book deals with an important and contemporary topic due to the extensive use of composites in applications where explosive blasts are an ever-present threat, such as military aircraft, armoured vehicles, naval ships and submarines, body armour, and other defense applications. In addition, the growing use of IEDs and other types of bombs used by terrorists to attack civilian and military targets highlights the need for this book. Many terrorist attacks occur in subways, trains, buses, aircraft, buildings, and other civil infrastructure made of composite materials. Designers, engineers and terrorist experts need the essential information to protect civilians, military personnel, and assets from explosive blasts. - Focuses on key aspects, including both modeling, analysis, and experimental work - Written by leading international experts from academia, defense agencies, and other organizations - Timely book due to the extensive use of composites in areas where explosive blasts are an ever-present threat in military applications

Effects of Explosions on Materials

Effects of Explosions on Materials
Author: Stepan S. Batsanov
Publisher: Springer Science & Business Media
Total Pages: 202
Release: 2013-06-29
Genre: Science
ISBN: 1475739699

In the 1950s explosives began to be used to generate ultrahigh pressures in condensed substances in order to modify their properties and structure. Notwithstanding the short duration of an explosion, its energy proved to be high enough to perform physical-chemical transformations of substances, and the new method gained wide industrial applications. It has both advan tages and drawbacks in comparison with the traditional method of static compression. The latter method, notorious for its cumbersome and expensive machin ery, allows one to maintain high pressure as long as one pleases and to regu late the temperature of the sample arbitrarily. But, the pressure available is rather limited and for any increase of this limit one has to pay by the progres sive shrinking of the working volume of a press. The dynamic method has the advantages of low cost and practically no restrictions of magnitude of pressure and the size of a processed sample, but the temperature in a compressed body is no longer controlled by an experi mentor. Rather, it is firmly dictated by the level of loading, according to the equation of state. Hence, it is difficult to recover metastable products and impossible to prepare solids with a low concentration of defects as the dura tion of explosion is too short for their elimination.

History of Shock Waves, Explosions and Impact

History of Shock Waves, Explosions and Impact
Author: Peter O. K. Krehl
Publisher: Springer Science & Business Media
Total Pages: 1298
Release: 2008-09-24
Genre: Science
ISBN: 3540304215

This unique and encyclopedic reference work describes the evolution of the physics of modern shock wave and detonation from the earlier and classical percussion. The history of this complex process is first reviewed in a general survey. Subsequently, the subject is treated in more detail and the book is richly illustrated in the form of a picture gallery. This book is ideal for everyone professionally interested in shock wave phenomena.

Neurotrauma

Neurotrauma
Author: Raj K. Narayan
Publisher: McGraw-Hill
Total Pages: 1558
Release: 1996
Genre: Medical
ISBN: 9780070456624

This reference is a comprehensive work in the field of neurotrauma and critical care. It incorporates the fields of head injury, spinal injury and basic neurotrauma research into one source. The major emphasis is on the treatment of patients with head and spinal cord injury, including the management of all other problems that bear upon the care of these patients.