Exploring Data Tables, Trends, and Shapes

Exploring Data Tables, Trends, and Shapes
Author: David C. Hoaglin
Publisher: John Wiley & Sons
Total Pages: 564
Release: 2011-09-28
Genre: Mathematics
ISBN: 1118150694

WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "Exploring Data Tables, Trends, and Shapes (EDTTS) was written as a companion volume to the same editors' book, Understanding Robust and Exploratory Data Analysis (UREDA). Whereas UREDA is a collection of exploratory and resistant methods of estimation and display, EDTTS goes a step further, describing multivariate and more complicated techniques . . . I feel that the authors have made a very significant contribution in the area of multivariate nonparametric methods. This book [is] a valuable source of reference to researchers in the area." —Technometrics "This edited volume . . . provides an important theoretical and philosophical extension to the currently popular statistical area of Exploratory Data Analysis, which seeks to reveal structure, or simple descriptions, in data . . . It is . . . an important reference volume which any statistical library should consider seriously." —The Statistician This newly available and affordably priced paperback version of Exploring Data Tables, Trends, and Shapes presents major advances in exploratory data analysis and robust regression methods and explains the techniques, relating them to classical methods. The book addresses the role of exploratory and robust techniques in the overall data-analytic enterprise, and it also presents new methods such as fitting by organized comparisons using the square combining table and identifying extreme cells in a sizable contingency table with probabilistic and exploratory approaches. The book features a chapter on using robust regression in less technical language than available elsewhere. Conceptual support for each technique is also provided.

Exploring Data in Engineering, the Sciences, and Medicine

Exploring Data in Engineering, the Sciences, and Medicine
Author: Ronald Pearson
Publisher: Oxford University Press
Total Pages: 794
Release: 2011-02-03
Genre: Mathematics
ISBN:

This book introduces various widely available exploratory data analysis methods, emphasizing those that are most useful in the preliminary exploration of large datasets involving mixed data types. Topics include descriptive statistics, graphical analysis tools, regression modeling and spectrum estimation, along with practical issues like outliers, missing data, and variable selection.

R for Data Science

R for Data Science
Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
Total Pages: 521
Release: 2016-12-12
Genre: Computers
ISBN: 1491910364

Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Exploring Data Analysis

Exploring Data Analysis
Author: W. J. Dixon
Publisher: Univ of California Press
Total Pages: 576
Release: 2023-12-22
Genre: Computers
ISBN: 0520338219

This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1974. This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived

Learning Python

Learning Python
Author: Mark Lutz
Publisher: "O'Reilly Media, Inc."
Total Pages: 1740
Release: 2013-06-12
Genre: Computers
ISBN: 1449355692

Get a comprehensive, in-depth introduction to the core Python language with this hands-on book. Based on author Mark Lutz’s popular training course, this updated fifth edition will help you quickly write efficient, high-quality code with Python. It’s an ideal way to begin, whether you’re new to programming or a professional developer versed in other languages. Complete with quizzes, exercises, and helpful illustrations, this easy-to-follow, self-paced tutorial gets you started with both Python 2.7 and 3.3— the latest releases in the 3.X and 2.X lines—plus all other releases in common use today. You’ll also learn some advanced language features that recently have become more common in Python code. Explore Python’s major built-in object types such as numbers, lists, and dictionaries Create and process objects with Python statements, and learn Python’s general syntax model Use functions to avoid code redundancy and package code for reuse Organize statements, functions, and other tools into larger components with modules Dive into classes: Python’s object-oriented programming tool for structuring code Write large programs with Python’s exception-handling model and development tools Learn advanced Python tools, including decorators, descriptors, metaclasses, and Unicode processing

Data Visualization: Exploring and Explaining with Data

Data Visualization: Exploring and Explaining with Data
Author: Jeffrey D. Camm
Publisher: Cengage Learning
Total Pages: 448
Release: 2021-05
Genre:
ISBN: 9780357631348

DATA VISUALIZATION: Exploring and Explaining with Data is designed to introduce best practices in data visualization to undergraduate and graduate students. This is one of the first books on data visualization designed for college courses. The book contains material on effective design, choice of chart type, effective use of color, how to both explore data visually, and how to explain concepts and results visually in a compelling way with data. The book explains both the "why" of data visualization and the "how." That is, the book provides lucid explanations of the guiding principles of data visualization through the use of interesting examples.

Data Mining and Data Visualization

Data Mining and Data Visualization
Author:
Publisher: Elsevier
Total Pages: 660
Release: 2005-05-02
Genre: Mathematics
ISBN: 0080459404

Data Mining and Data Visualization focuses on dealing with large-scale data, a field commonly referred to as data mining. The book is divided into three sections. The first deals with an introduction to statistical aspects of data mining and machine learning and includes applications to text analysis, computer intrusion detection, and hiding of information in digital files. The second section focuses on a variety of statistical methodologies that have proven to be effective in data mining applications. These include clustering, classification, multivariate density estimation, tree-based methods, pattern recognition, outlier detection, genetic algorithms, and dimensionality reduction. The third section focuses on data visualization and covers issues of visualization of high-dimensional data, novel graphical techniques with a focus on human factors, interactive graphics, and data visualization using virtual reality. This book represents a thorough cross section of internationally renowned thinkers who are inventing methods for dealing with a new data paradigm. - Distinguished contributors who are international experts in aspects of data mining - Includes data mining approaches to non-numerical data mining including text data, Internet traffic data, and geographic data - Highly topical discussions reflecting current thinking on contemporary technical issues, e.g. streaming data - Discusses taxonomy of dataset sizes, computational complexity, and scalability usually ignored in most discussions - Thorough discussion of data visualization issues blending statistical, human factors, and computational insights

Visualizing Data

Visualizing Data
Author: Ben Fry
Publisher: "O'Reilly Media, Inc."
Total Pages: 384
Release: 2008
Genre: Computers
ISBN: 0596519303

Provides information on the methods of visualizing data on the Web, along with example projects and code.

Exploring Textual Data

Exploring Textual Data
Author: Ludovic Lebart
Publisher: Springer Science & Business Media
Total Pages: 270
Release: 2013-04-17
Genre: Mathematics
ISBN: 9401715254

Researchers in a number of disciplines deal with large text sets requiring both text management and text analysis. Faced with a large amount of textual data collected in marketing surveys, literary investigations, historical archives and documentary data bases, these researchers require assistance with organizing, describing and comparing texts. Exploring Textual Data demonstrates how exploratory multivariate statistical methods such as correspondence analysis and cluster analysis can be used to help investigate, assimilate and evaluate textual data. The main text does not contain any strictly mathematical demonstrations, making it accessible to a large audience. This book is very user-friendly with proofs abstracted in the appendices. Full definitions of concepts, implementations of procedures and rules for reading and interpreting results are fully explored. A succession of examples is intended to allow the reader to appreciate the variety of actual and potential applications and the complementary processing methods. A glossary of terms is provided.