Exploratory Data Analysis with MATLAB

Exploratory Data Analysis with MATLAB
Author: Wendy L. Martinez
Publisher: CRC Press
Total Pages: 589
Release: 2017-08-07
Genre: Mathematics
ISBN: 1315349841

Praise for the Second Edition: "The authors present an intuitive and easy-to-read book. ... accompanied by many examples, proposed exercises, good references, and comprehensive appendices that initiate the reader unfamiliar with MATLAB." —Adolfo Alvarez Pinto, International Statistical Review "Practitioners of EDA who use MATLAB will want a copy of this book. ... The authors have done a great service by bringing together so many EDA routines, but their main accomplishment in this dynamic text is providing the understanding and tools to do EDA. —David A Huckaby, MAA Reviews Exploratory Data Analysis (EDA) is an important part of the data analysis process. The methods presented in this text are ones that should be in the toolkit of every data scientist. As computational sophistication has increased and data sets have grown in size and complexity, EDA has become an even more important process for visualizing and summarizing data before making assumptions to generate hypotheses and models. Exploratory Data Analysis with MATLAB, Third Edition presents EDA methods from a computational perspective and uses numerous examples and applications to show how the methods are used in practice. The authors use MATLAB code, pseudo-code, and algorithm descriptions to illustrate the concepts. The MATLAB code for examples, data sets, and the EDA Toolbox are available for download on the book’s website. New to the Third Edition Random projections and estimating local intrinsic dimensionality Deep learning autoencoders and stochastic neighbor embedding Minimum spanning tree and additional cluster validity indices Kernel density estimation Plots for visualizing data distributions, such as beanplots and violin plots A chapter on visualizing categorical data

Exploratory Data Analysis with MATLAB

Exploratory Data Analysis with MATLAB
Author: Wendy L. Martinez
Publisher: CRC Press
Total Pages: 525
Release: 2010-12-16
Genre: Business & Economics
ISBN: 1439812217

Since the publication of the bestselling first edition, many advances have been made in exploratory data analysis (EDA). Covering innovative approaches for dimensionality reduction, clustering, and visualization, Exploratory Data Analysis with MATLAB®, Second Edition uses numerous examples and applications to show how the methods are used in practice. New to the Second Edition Discussions of nonnegative matrix factorization, linear discriminant analysis, curvilinear component analysis, independent component analysis, and smoothing splines An expanded set of methods for estimating the intrinsic dimensionality of a data set Several clustering methods, including probabilistic latent semantic analysis and spectral-based clustering Additional visualization methods, such as a rangefinder boxplot, scatterplots with marginal histograms, biplots, and a new method called Andrews’ images Instructions on a free MATLAB GUI toolbox for EDA Like its predecessor, this edition continues to focus on using EDA methods, rather than theoretical aspects. The MATLAB codes for the examples, EDA toolboxes, data sets, and color versions of all figures are available for download at http://pi-sigma.info

Computational Statistics Handbook with MATLAB

Computational Statistics Handbook with MATLAB
Author: Wendy L. Martinez
Publisher: CRC Press
Total Pages: 611
Release: 2001-09-26
Genre: Mathematics
ISBN: 1420035630

Approaching computational statistics through its theoretical aspects can be daunting. Often intimidated or distracted by the theory, researchers and students can lose sight of the actual goals and applications of the subject. What they need are its key concepts, an understanding of its methods, experience with its implementation, and practice with

Computational Statistics Handbook with MATLAB

Computational Statistics Handbook with MATLAB
Author: Wendy L. Martinez
Publisher: CRC Press
Total Pages: 794
Release: 2007-12-20
Genre: Mathematics
ISBN: 1420010867

As with the bestselling first edition, Computational Statistics Handbook with MATLAB, Second Edition covers some of the most commonly used contemporary techniques in computational statistics. With a strong, practical focus on implementing the methods, the authors include algorithmic descriptions of the procedures as well as

Computational Statistics Handbook with MATLAB

Computational Statistics Handbook with MATLAB
Author: Wendy L. Martinez
Publisher: CRC Press
Total Pages: 751
Release: 2015-12-16
Genre: Business & Economics
ISBN: 1466592745

A Strong Practical Focus on Applications and AlgorithmsComputational Statistics Handbook with MATLAB, Third Edition covers today's most commonly used techniques in computational statistics while maintaining the same philosophy and writing style of the bestselling previous editions. The text keeps theoretical concepts to a minimum, emphasizing the i

Music Data Analysis

Music Data Analysis
Author: Claus Weihs
Publisher: CRC Press
Total Pages: 531
Release: 2016-11-17
Genre: Business & Economics
ISBN: 1315353830

This book provides a comprehensive overview of music data analysis, from introductory material to advanced concepts. It covers various applications including transcription and segmentation as well as chord and harmony, instrument and tempo recognition. It also discusses the implementation aspects of music data analysis such as architecture, user interface and hardware. It is ideal for use in university classes with an interest in music data analysis. It also could be used in computer science and statistics as well as musicology.

Python for Data Analysis

Python for Data Analysis
Author: Wes McKinney
Publisher: "O'Reilly Media, Inc."
Total Pages: 553
Release: 2017-09-25
Genre: Computers
ISBN: 1491957611

Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples

Clustering

Clustering
Author: Boris Mirkin
Publisher: CRC Press
Total Pages: 374
Release: 2016-04-19
Genre: Business & Economics
ISBN: 1439838429

Often considered more of an art than a science, books on clustering have been dominated by learning through example with techniques chosen almost through trial and error. Even the two most popular, and most related, clustering methods-K-Means for partitioning and Ward's method for hierarchical clustering-have lacked the theoretical underpinning req

Statistical Learning and Data Science

Statistical Learning and Data Science
Author: Mireille Gettler Summa
Publisher: CRC Press
Total Pages: 242
Release: 2011-12-19
Genre: Business & Economics
ISBN: 143986764X

Data analysis is changing fast. Driven by a vast range of application domains and affordable tools, machine learning has become mainstream. Unsupervised data analysis, including cluster analysis, factor analysis, and low dimensionality mapping methods continually being updated, have reached new heights of achievement in the incredibly rich data wor

Statistics in MATLAB

Statistics in MATLAB
Author: MoonJung Cho
Publisher: CRC Press
Total Pages: 280
Release: 2014-12-15
Genre: Business & Economics
ISBN: 1466596570

This primer provides an accessible introduction to MATLAB version 8 and its extensive functionality for statistics. Fulfilling the need for a practical user's guide, the book covers capabilities in the main MATLAB package, the Statistics Toolbox, and the student version of MATLAB, presenting examples of how MATLAB can be used to analyze data. It explains how to determine what method should be used for analysis, and includes figures, visual aids, and access to a companion website with data sets and additional examples.