Exploratory Causal Analysis With Time Series Data
Download Exploratory Causal Analysis With Time Series Data full books in PDF, epub, and Kindle. Read online free Exploratory Causal Analysis With Time Series Data ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : James M. McCracken |
Publisher | : Springer Nature |
Total Pages | : 133 |
Release | : 2022-06-01 |
Genre | : Computers |
ISBN | : 3031019091 |
Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments. Data analysis techniques are required for identifying causal information and relationships directly from such observational data. This need has led to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in time series data sets. Exploratory causal analysis (ECA) provides a framework for exploring potential causal structures in time series data sets and is characterized by a myopic goal to determine which data series from a given set of series might be seen as the primary driver. In this work, ECA is used on several synthetic and empirical data sets, and it is found that all of the tested time series causality tools agree with each other (and intuitive notions of causality) for many simple systems but can provide conflicting causal inferences for more complicated systems. It is proposed that such disagreements between different time series causality tools during ECA might provide deeper insight into the data than could be found otherwise.
Author | : Gábor Békés |
Publisher | : Cambridge University Press |
Total Pages | : 741 |
Release | : 2021-05-06 |
Genre | : Business & Economics |
ISBN | : 1108483011 |
A comprehensive textbook on data analysis for business, applied economics and public policy that uses case studies with real-world data.
Author | : Florin Popescu |
Publisher | : |
Total Pages | : 152 |
Release | : 2013-06 |
Genre | : Computers |
ISBN | : 9780971977754 |
This volume in the Challenges in Machine Learning series gathers papers from the Mini Symposium on Causality in Time Series, which was part of the Neural Information Processing Systems (NIPS) confernce in 2009 in Vancouver, Canada. These papers present state-of-the-art research in time-series causality to the machine learning community, unifying methodological interests in the various communities that require such inference.
Author | : Richard McCleary |
Publisher | : Oxford University Press |
Total Pages | : 393 |
Release | : 2017 |
Genre | : Business & Economics |
ISBN | : 0190661569 |
Design and Analysis of Time Series Experiments develops methods and models for analysis and interpretation of time series experiments while also addressing recent developments in causal modeling. Unlike other time series texts, it integrates the statistical issues of design, estimation, and interpretation with foundational validity issues. Drawing on examples from criminology, economics, education, pharmacology, public policy, program evaluation, public health, and psychology, this text addresses researchers and graduate students in a wide range of the behavioral, biomedical, and social sciences.
Author | : Rob J Hyndman |
Publisher | : OTexts |
Total Pages | : 380 |
Release | : 2018-05-08 |
Genre | : Business & Economics |
ISBN | : 0987507117 |
Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.
Author | : Robert H. Shumway |
Publisher | : |
Total Pages | : 568 |
Release | : 2014-01-15 |
Genre | : |
ISBN | : 9781475732627 |
Author | : Gábor Békés |
Publisher | : Cambridge University Press |
Total Pages | : 742 |
Release | : 2021-05-06 |
Genre | : Business & Economics |
ISBN | : 1108582672 |
This textbook provides future data analysts with the tools, methods, and skills needed to answer data-focused, real-life questions; to carry out data analysis; and to visualize and interpret results to support better decisions in business, economics, and public policy. Data wrangling and exploration, regression analysis, machine learning, and causal analysis are comprehensively covered, as well as when, why, and how the methods work, and how they relate to each other. As the most effective way to communicate data analysis, running case studies play a central role in this textbook. Each case starts with an industry-relevant question and answers it by using real-world data and applying the tools and methods covered in the textbook. Learning is then consolidated by 360 practice questions and 120 data exercises. Extensive online resources, including raw and cleaned data and codes for all analysis in Stata, R, and Python, can be found at www.gabors-data-analysis.com.
Author | : David Barber |
Publisher | : Cambridge University Press |
Total Pages | : 432 |
Release | : 2011-08-11 |
Genre | : Computers |
ISBN | : 0521196760 |
The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.
Author | : Carol S. Aneshensel |
Publisher | : SAGE |
Total Pages | : 473 |
Release | : 2013 |
Genre | : Reference |
ISBN | : 1412994357 |
This book presents the elaboration model for the multivariate analysis of observational quantitative data. This model entails the systematic introduction of "third variables" to the analysis of a focal relationship between one independent and one dependent variable to ascertain whether an inference of causality is justified. Two complementary strategies are used: an exclusionary strategy that rules out alternative explanations such as spuriousness and redundancy with competing theories, and an inclusive strategy that connects the focal relationship to a network of other relationships, including the hypothesized causal mechanisms linking the focal independent variable to the focal dependent variable. The primary emphasis is on the translation of theory into a logical analytic strategy and the interpretation of results. The elaboration model is applied with case studies drawn from newly published research that serve as prototypes for aligning theory and the data analytic plan used to test it; these studies are drawn from a wide range of substantive topics in the social sciences, such as emotion management in the workplace, subjective age identification during the transition to adulthood, and the relationship between religious and paranormal beliefs. The second application of the elaboration model is in the form of original data analysis presented in two Analysis Journals that are integrated throughout the text and implement the full elaboration model. Using real data, not contrived examples, the text provides a step-by-step guide through the process of integrating theory with data analysis in order to arrive at meaningful answers to research questions.
Author | : Carl Anderson |
Publisher | : "O'Reilly Media, Inc." |
Total Pages | : 242 |
Release | : 2015-07-23 |
Genre | : Computers |
ISBN | : 1491916869 |
What do you need to become a data-driven organization? Far more than having big data or a crack team of unicorn data scientists, it requires establishing an effective, deeply-ingrained data culture. This practical book shows you how true data-drivenness involves processes that require genuine buy-in across your company, from analysts and management to the C-Suite and the board. Through interviews and examples from data scientists and analytics leaders in a variety of industries, author Carl Anderson explains the analytics value chain you need to adopt when building predictive business modelsâ??from data collection and analysis to the insights and leadership that drive concrete actions. Youâ??ll learn what works and what doesnâ??t, and why creating a data-driven culture throughout your organization is essential. Start from the bottom up: learn how to collect the right data the right way Hire analysts with the right skills, and organize them into teams Examine statistical and visualization tools, and fact-based story-telling methods Collect and analyze data while respecting privacy and ethics Understand how analysts and their managers can help spur a data-driven culture Learn the importance of data leadership and C-level positions such as chief data officer and chief analytics officer