Experimental Mathematics with Maple

Experimental Mathematics with Maple
Author: Franco Vivaldi
Publisher: CRC Press
Total Pages: 236
Release: 2018-10-03
Genre: Mathematics
ISBN: 1482285819

As discrete mathematics rapidly becomes a required element of undergraduate mathematics programs, algebraic software systems replace compiled languages and are now most often the computational tool of choice. Newcomers to university level mathematics, therefore, must not only grasp the fundamentals of discrete mathematics, they must also learn to use an algebraic manipulator and develop skills in abstract reasoning. Experimental Mathematics with MAPLE uniquely responds to these needs. Following an emerging trend in research, it places abstraction and axiomatization at the end of a learning process that begins with computer experimentation. It introduces the foundations of discrete mathematics and, assuming no previous knowledge of computing, gradually develops basic computational skills using the latest version of the powerful MAPLE® software. The author's approach is to expose readers to a large number of concrete computational examples and encourage them to isolate the general from the particular, to synthesize computational results, formulate conjectures, and attempt rigorous proofs. Using this approach, Experimental Mathematics with MAPLE enables readers to build a foundation in discrete mathematics, gain valuable experience with algebraic computing, and develop a familiarity with basic abstract concepts, notation, and jargon. Its engaging style, numerous exercises and examples, and Internet posting of selected solutions and MAPLE worksheets make this text ideal for use both in the classroom and for self-study.

Experimental Mathematics with Maple

Experimental Mathematics with Maple
Author: Franco Vivaldi
Publisher: CRC Press
Total Pages: 248
Release: 2018-10-03
Genre: Mathematics
ISBN: 1351990195

As discrete mathematics rapidly becomes a required element of undergraduate mathematics programs, algebraic software systems replace compiled languages and are now most often the computational tool of choice. Newcomers to university level mathematics, therefore, must not only grasp the fundamentals of discrete mathematics, they must also learn to use an algebraic manipulator and develop skills in abstract reasoning. Experimental Mathematics with MAPLE uniquely responds to these needs. Following an emerging trend in research, it places abstraction and axiomatization at the end of a learning process that begins with computer experimentation. It introduces the foundations of discrete mathematics and, assuming no previous knowledge of computing, gradually develops basic computational skills using the latest version of the powerful MAPLE® software. The author's approach is to expose readers to a large number of concrete computational examples and encourage them to isolate the general from the particular, to synthesize computational results, formulate conjectures, and attempt rigorous proofs. Using this approach, Experimental Mathematics with MAPLE enables readers to build a foundation in discrete mathematics, gain valuable experience with algebraic computing, and develop a familiarity with basic abstract concepts, notation, and jargon. Its engaging style, numerous exercises and examples, and Internet posting of selected solutions and MAPLE worksheets make this text ideal for use both in the classroom and for self-study.

An Introduction to Modern Mathematical Computing

An Introduction to Modern Mathematical Computing
Author: Jonathan M. Borwein
Publisher: Springer Science & Business Media
Total Pages: 237
Release: 2012-08-07
Genre: Mathematics
ISBN: 1461442532

Thirty years ago mathematical, as opposed to applied numerical, computation was difficult to perform and so relatively little used. Three threads changed that: the emergence of the personal computer; the discovery of fiber-optics and the consequent development of the modern internet; and the building of the Three “M’s” Maple, Mathematica and Matlab. We intend to persuade that Mathematica and other similar tools are worth knowing, assuming only that one wishes to be a mathematician, a mathematics educator, a computer scientist, an engineer or scientist, or anyone else who wishes/needs to use mathematics better. We also hope to explain how to become an "experimental mathematician" while learning to be better at proving things. To accomplish this our material is divided into three main chapters followed by a postscript. These cover elementary number theory, calculus of one and several variables, introductory linear algebra, and visualization and interactive geometric computation.

Introduction to Experimental Mathematics

Introduction to Experimental Mathematics
Author: Søren Eilers
Publisher: Cambridge University Press
Total Pages: 321
Release: 2017-06-01
Genre: Computers
ISBN: 1108132790

Mathematics is not, and never will be, an empirical science, but mathematicians are finding that the use of computers and specialized software allows the generation of mathematical insight in the form of conjectures and examples, which pave the way for theorems and their proofs. In this way, the experimental approach to pure mathematics is revolutionizing the way research mathematicians work. As the first of its kind, this book provides material for a one-semester course in experimental mathematics that will give students the tools and training needed to systematically investigate and develop mathematical theory using computer programs written in Maple. Accessible to readers without prior programming experience, and using examples of concrete mathematical problems to illustrate a wide range of techniques, the book gives a thorough introduction to the field of experimental mathematics, which will prepare students for the challenge posed by open mathematical problems.

Differential Equations

Differential Equations
Author: Robert P. Gilbert
Publisher: Chapman & Hall/CRC
Total Pages: 248
Release: 2021
Genre: Mathematics
ISBN: 9781003175643

"This book illustrates how MAPLE can be used to supplement a standard, elementary text in ordinary and partial differential equation. MAPLE is used with several purposes in mind. The authors are firm believers in the teaching of mathematics as an experimental science where the student does numerous calculations and then synthesizes these experiments into a general theory. Projects based on the concept of writing generic programs test a student's understanding of the theoretical material of the course. A student who can solve a general problem certainly can solve a specialized problem. The authors show MAPLE has a built-in program for doing these problems. While it is important for the student to learn MAPLEâS in built programs, using these alone removes the student from the conceptual nature of differential equations. The goal of the book is to teach the students enough about the computer algebra system MAPLE so that it can be used in an investigative way. The investigative materials which are present in the book are done in desk calculator mode DCM, that is the calculations are in the order command line followed by output line. Frequently, this approach eventually leads to a program or procedure in MAPLE designated by proc and completed by end proc. This book was developed through ten years of instruction in the differential equations course"--

Maple

Maple
Author: Bernard V Liengme
Publisher: Morgan & Claypool Publishers
Total Pages: 171
Release: 2019-06-04
Genre: Science
ISBN: 1643274880

Maple is a comprehensive symbolic mathematics application which is well suited for demonstrating physical science topics and solving associated problems. Because Maple is such a rich application, it has a somewhat steep learning curve. Most existing texts concentrate on mathematics; the Maple help facility is too detailed and lacks physical science examples, many Maple-related websites are out of date giving readers information on older Maple versions. This book records the author's journey of discovery; he was familiar with SMath but not with Maple and set out to learn the more advanced application. It leads readers through the basic Maple features with physical science worked examples, giving them a firm base on which to build if more complex features interest them.

Experiments In Mathematics Using Maple

Experiments In Mathematics Using Maple
Author: Christopher T.J. Dodson
Publisher: Springer Science & Business Media
Total Pages: 476
Release: 2012-12-06
Genre: Mathematics
ISBN: 364279758X

The book is designed for use in school computer labs or with home computers running the computer algebra system Maple.

Maple Animation

Maple Animation
Author: John F. Putz
Publisher: CRC Press
Total Pages: 242
Release: 2003-05-14
Genre: Mathematics
ISBN: 1135439834

There is nothing quite like that feeling you get when you see that look of recognition and enjoyment on your students' faces. Not just the strong ones, but everyone is nodding in agreement during your first explanation of the geometry of directional derivatives. If you have incorporated animated demonstrations into your teaching, you know how effective they can be in eliciting this kind of response. You know the value of giving students vivid moving images to tie to concepts. But learning to make animations generally requires extensive searching through a vast computer algebra system for the pertinent functions. Maple Animation brings together virtually all of the functions and procedures useful in creating sophisticated animations using Maple 7, 8, or 9 and it presents them in a logical, accessible way. The accompanying CD-ROM provides all of the Maple code used in the book, including the code for more than 30 ready-to-use demonstrations. From Newton's method to linear transformations, the complete animations included in this book allow you to use them straight out of the box. Careful explanations of the methods teach you how to implement your own creative ideas. Whether you are a novice or an experienced Maple user, Maple Animation provides the tools and skills to enhance your teaching and your students' enjoyment of the subject through animation.

The Computer as Crucible

The Computer as Crucible
Author: Jonathan Borwein
Publisher: CRC Press
Total Pages: 170
Release: 2008-10-28
Genre: Mathematics
ISBN: 1439876916

Keith Devlin and Jonathan Borwein, two well-known mathematicians with expertise in different mathematical specialties but with a common interest in experimentation in mathematics, have joined forces to create this introduction to experimental mathematics. They cover a variety of topics and examples to give the reader a good sense of the current sta

Gems in Experimental Mathematics

Gems in Experimental Mathematics
Author: Tewodros Amdeberhan
Publisher: American Mathematical Soc.
Total Pages: 426
Release: 2010
Genre: Mathematics
ISBN: 0821848690

These proceedings reflect the special session on Experimental Mathematics held January 5, 2009, at the Joint Mathematics Meetings in Washington, DC as well as some papers specially solicited for this volume. Experimental Mathematics is a recently structured field of Mathematics that uses the computer and advanced computing technology as a tool to perform experiments. These include the analysis of examples, testing of new ideas, and the search of patterns to suggest results and to complement existing analytical rigor. The development of a broad spectrum of mathematical software products, such as MathematicaR and MapleTM, has allowed mathematicians of diverse backgrounds and interests to use the computer as an essential tool as part of their daily work environment. This volume reflects a wide range of topics related to the young field of Experimental Mathematics. The use of computation varies from aiming to exclude human input in the solution of a problem to traditional mathematical questions for which computation is a prominent tool.