Concrete Beams with Openings

Concrete Beams with Openings
Author: M. A. Mansur
Publisher: CRC Press
Total Pages: 240
Release: 1999-01-29
Genre: Technology & Engineering
ISBN: 9780849374357

This book compiles state-of-the-art information on the behavior, analysis, and design of concrete beams containing transverse openings. Discussions include the need, effects, and classification of openings as well as the general requirements for fulfilling design pure bending, combined bending, and shear - illustrated with numerical examples torsion alone or in combination with bending and shear large rectangular openings as well as opening size and location on beam behavior methods for analyzing ultimate strength and serviceability requirements effects of torsion in beams large openings in continuous beams and their effects on possible redistribution of internal forces as well as guidelines and procedures for the design of such beams effect of prestressing on the serviceability and strength of beams with web openings design against cracking at openings and ultimate loads Concrete Beams with Openings serves as an invaluable source of information for designers and practicing engineers, especially useful since little or no provision or guidelines are currently available in most building codes.

Control of Cracking in Reinforced Concrete Structures

Control of Cracking in Reinforced Concrete Structures
Author: Francis Barre
Publisher: John Wiley & Sons
Total Pages: 256
Release: 2016-08-29
Genre: Technology & Engineering
ISBN: 1786300524

This book presents new guidelines for the control of cracking in massive reinforced and prestressed concrete structures. Understanding this behavior during construction allows engineers to ensure properties such as durability, reliability, and water- and air-tightness throughout a structure’s lifetime. Based on the findings of the French national CEOS.fr project, the authors extend existing engineering standards and codes to advance the measurement and prediction of cracking patterns. Various behaviors of concrete under load are explored within the chapters of the book. These include cracking of ties, beams and in walls, and the simulation and evaluation of cracking, shrinkage and creep. The authors propose new engineering rules for crack width and space assessment of cracking patterns, and provide recommendations for measurement devices and protocols. Intended as a reference for design and civil engineers working on construction projects, as well as to aid further work in the research community, applied examples are provided at the end of each chapter in the form of expanded measurement methods, calculations and commentary on models.

Examples for the Design of Structural Concrete with Strut-and-tie Models

Examples for the Design of Structural Concrete with Strut-and-tie Models
Author: American Concrete Institute. Convention
Publisher:
Total Pages: 264
Release: 2002
Genre: Architecture
ISBN:

"Prepared by members of ACI Subcommittee 445-1, Strut and Tie Models, for sessions at the Fall Convention in Phoenix, October 27 to November 1, 2002, and sponsored by Joint ACI-ASCE Committee 445, Shear and Torsion and ACI Committee 318-E, Shear and Torsion."

Fiber-reinforced-plastic (FRP) Reinforcement for Concrete Structures

Fiber-reinforced-plastic (FRP) Reinforcement for Concrete Structures
Author: Antonio Nanni
Publisher: Elsevier Publishing Company
Total Pages: 468
Release: 1993
Genre: Technology & Engineering
ISBN:

The use of fiber reinforced plastic (FRP) composites for prestressed and non-prestressed concrete reinforcement has developed into a technology with serious and substantial claims for the advancement of construction materials and methods. Research and development is now occurring worldwide. The 20 papers in this volume make a further contribution in advancing knowledge and acceptance of FRP composites for concrete reinforcement. The articles are divided into three parts. Part I introduces FRP reinforcement for concrete structures and describes general material properties and manufacturing meth.