AI and UX

AI and UX
Author: Gavin Lew
Publisher: Apress
Total Pages: 143
Release: 2020-10-17
Genre: Computers
ISBN: 9781484257746

As venture capital and industrial resources are increasingly poured into rapid advances in artificial intelligence, the actual usage and success of AI depends on a satisfactory experience for the user. UX will play a significant role in the adoption of AI technologies across markets, and AI and UX explores just what these demands will entail. Great effort has been put forth to continuously make AI “smarter.” But, will smarter always equal more successful AI? It is not just about getting a product to market, but about getting the product into a user’s hands in a form that will be embraced. This demands examining the product from the perspective of the user. Authors Gavin Lew and Robert Schumacher have written AI and UX to examine just how product managers and designers can best strike this balance. From exploring the history of the parallel journeys of AI and UX, to investigating past product examples and failures, to practical expert knowledge on how to best execute a positive user experience, AI and UX examines all angles of how AI can best be developed within a UX framework. The new world of AI necessitates an equally new UX lens through which to see all potential products. While massive inroads have created strides in AI technology, it must be accessible and easy to use for the consumer. Innovators in the field need to shift thinking from “it works” to “it works well,” which makes all the difference in increasing adoption. Let your users enhance your data, and let the UX of your product do the selling for you. AI and UX is your roadmap for the future. What You'll Learn Understand how the usage and success of AI depends on a great user experience Discover how technology can advance beyond “it works” to “it works well,” which subsequently increases its adoption Determine what ways can we let the users enhance the data to make AI better attuned to their needs Realize how you can make humans smarter in their interactions with AI Who This Book Is For Those interested in AI and future implications; these can be futurists, technophiles, or product designers and product managers working on AI products

Deploying Machine Learning

Deploying Machine Learning
Author: Robbie Allen
Publisher: Addison-Wesley Professional
Total Pages: 99998
Release: 2019-05
Genre: Computers
ISBN: 9780135226209

Increasingly, business leaders and managers recognize that machine learning offers their companies immense opportunities for competitive advantage. But most discussions of machine learning are intensely technical or academic, and don't offer practical information leaders can use to identify, evaluate, plan, or manage projects. Deploying Machine Learning fills that gap, helping them clarify exactly how machine learning can help them, and collaborate with technologists to actually apply it successfully. You'll learn: What machine learning is, how it compares to "big data" and "artificial intelligence," and why it's suddenly so important What machine learning can do for you: solutions for computer vision, natural language processing, prediction, and more How to use machine learning to solve real business problems -- from reducing costs through improving decision-making and introducing new products Separating hype from reality: identifying pitfalls, limitations, and misconceptions upfront Knowing enough about the technology to work effectively with your technical team Getting the data right: sourcing, collection, governance, security, and culture Solving harder problems: exploring deep learning and other advanced techniques Understanding today's machine learning software and hardware ecosystem Evaluating potential projects, and addressing workforce concerns Staffing your project, acquiring the right tools, and building a workable project plan Interpreting results -- and building an organization that can increasingly learn from data Using machine learning responsibly and ethically Preparing for tomorrow's advances The authors conclude with five chapter-length case studies: image, text, and video analysis, chatbots, and prediction applications. For each, they don't just present results: they also illuminate the process the company undertook, and the pitfalls it overcame along the way.

Artificial Intelligence in Healthcare

Artificial Intelligence in Healthcare
Author: Adam Bohr
Publisher: Academic Press
Total Pages: 385
Release: 2020-06-21
Genre: Computers
ISBN: 0128184396

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Human-Centered AI

Human-Centered AI
Author: Ben Shneiderman
Publisher: Oxford University Press
Total Pages: 390
Release: 2022
Genre: Computers
ISBN: 0192845292

The remarkable progress in algorithms for machine and deep learning have opened the doors to new opportunities, and some dark possibilities. However, a bright future awaits those who build on their working methods by including HCAI strategies of design and testing. As many technology companies and thought leaders have argued, the goal is not to replace people, but to empower them by making design choices that give humans control over technology. In Human-Centered AI, Professor Ben Shneiderman offers an optimistic realist's guide to how artificial intelligence can be used to augment and enhance humans' lives. This project bridges the gap between ethical considerations and practical realities to offer a road map for successful, reliable systems. Digital cameras, communications services, and navigation apps are just the beginning. Shneiderman shows how future applications will support health and wellness, improve education, accelerate business, and connect people in reliable, safe, and trustworthy ways that respect human values, rights, justice, and dignity.

The Age of Intent

The Age of Intent
Author: Josh Bernoff
Publisher:
Total Pages: 256
Release: 2019-05-28
Genre: Business & Economics
ISBN: 9781643072401

The Myth of Artificial Intelligence

The Myth of Artificial Intelligence
Author: Erik J. Larson
Publisher: Harvard University Press
Total Pages: 321
Release: 2021-04-06
Genre: Computers
ISBN: 0674983513

“Artificial intelligence has always inspired outlandish visions—that AI is going to destroy us, save us, or at the very least radically transform us. Erik Larson exposes the vast gap between the actual science underlying AI and the dramatic claims being made for it. This is a timely, important, and even essential book.” —John Horgan, author of The End of Science Many futurists insist that AI will soon achieve human levels of intelligence. From there, it will quickly eclipse the most gifted human mind. The Myth of Artificial Intelligence argues that such claims are just that: myths. We are not on the path to developing truly intelligent machines. We don’t even know where that path might be. Erik Larson charts a journey through the landscape of AI, from Alan Turing’s early work to today’s dominant models of machine learning. Since the beginning, AI researchers and enthusiasts have equated the reasoning approaches of AI with those of human intelligence. But this is a profound mistake. Even cutting-edge AI looks nothing like human intelligence. Modern AI is based on inductive reasoning: computers make statistical correlations to determine which answer is likely to be right, allowing software to, say, detect a particular face in an image. But human reasoning is entirely different. Humans do not correlate data sets; we make conjectures sensitive to context—the best guess, given our observations and what we already know about the world. We haven’t a clue how to program this kind of reasoning, known as abduction. Yet it is the heart of common sense. Larson argues that all this AI hype is bad science and bad for science. A culture of invention thrives on exploring unknowns, not overselling existing methods. Inductive AI will continue to improve at narrow tasks, but if we are to make real progress, we must abandon futuristic talk and learn to better appreciate the only true intelligence we know—our own.

Artificial Intelligence in Practice

Artificial Intelligence in Practice
Author: Bernard Marr
Publisher: John Wiley & Sons
Total Pages: 352
Release: 2019-04-15
Genre: Business & Economics
ISBN: 1119548969

Cyber-solutions to real-world business problems Artificial Intelligence in Practice is a fascinating look into how companies use AI and machine learning to solve problems. Presenting 50 case studies of actual situations, this book demonstrates practical applications to issues faced by businesses around the globe. The rapidly evolving field of artificial intelligence has expanded beyond research labs and computer science departments and made its way into the mainstream business environment. Artificial intelligence and machine learning are cited as the most important modern business trends to drive success. It is used in areas ranging from banking and finance to social media and marketing. This technology continues to provide innovative solutions to businesses of all sizes, sectors and industries. This engaging and topical book explores a wide range of cases illustrating how businesses use AI to boost performance, drive efficiency, analyse market preferences and many others. Best-selling author and renowned AI expert Bernard Marr reveals how machine learning technology is transforming the way companies conduct business. This detailed examination provides an overview of each company, describes the specific problem and explains how AI facilitates resolution. Each case study provides a comprehensive overview, including some technical details as well as key learning summaries: Understand how specific business problems are addressed by innovative machine learning methods Explore how current artificial intelligence applications improve performance and increase efficiency in various situations Expand your knowledge of recent AI advancements in technology Gain insight on the future of AI and its increasing role in business and industry Artificial Intelligence in Practice: How 50 Successful Companies Used Artificial Intelligence to Solve Problems is an insightful and informative exploration of the transformative power of technology in 21st century commerce.

Artificial Intelligence

Artificial Intelligence
Author: Harvard Business Review
Publisher: HBR Insights
Total Pages: 160
Release: 2019
Genre: Business & Economics
ISBN: 9781633697898

Companies that don't use AI to their advantage will soon be left behind. Artificial intelligence and machine learning will drive a massive reshaping of the economy and society. What should you and your company be doing right now to ensure that your business is poised for success? These articles by AI experts and consultants will help you understand today's essential thinking on what AI is capable of now, how to adopt it in your organization, and how the technology is likely to evolve in the near future. Artificial Intelligence: The Insights You Need from Harvard Business Review will help you spearhead important conversations, get going on the right AI initiatives for your company, and capitalize on the opportunity of the machine intelligence revolution. Catch up on current topics and deepen your understanding of them with the Insights You Need series from Harvard Business Review. Featuring some of HBR's best and most recent thinking, Insights You Need titles are both a primer on today's most pressing issues and an extension of the conversation, with interesting research, interviews, case studies, and practical ideas to help you explore how a particular issue will impact your company and what it will mean for you and your business.

Artificial Intelligence in Society

Artificial Intelligence in Society
Author: OECD
Publisher: OECD Publishing
Total Pages: 152
Release: 2019-06-11
Genre:
ISBN: 9264545190

The artificial intelligence (AI) landscape has evolved significantly from 1950 when Alan Turing first posed the question of whether machines can think. Today, AI is transforming societies and economies. It promises to generate productivity gains, improve well-being and help address global challenges, such as climate change, resource scarcity and health crises.

Deep Learning for Coders with fastai and PyTorch

Deep Learning for Coders with fastai and PyTorch
Author: Jeremy Howard
Publisher: O'Reilly Media
Total Pages: 624
Release: 2020-06-29
Genre: Computers
ISBN: 1492045497

Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala