Excursions in Harmonic Analysis, Volume 1

Excursions in Harmonic Analysis, Volume 1
Author: Travis D Andrews
Publisher: Springer Science & Business Media
Total Pages: 489
Release: 2013-01-04
Genre: Mathematics
ISBN: 0817683763

The Norbert Wiener Center for Harmonic Analysis and Applications provides a state-of-the-art research venue for the broad emerging area of mathematical engineering in the context of harmonic analysis. This two-volume set consists of contributions from speakers at the February Fourier Talks (FFT) from 2006-2011. The FFT are organized by the Norbert Wiener Center in the Department of Mathematics at the University of Maryland, College Park. These volumes span a large spectrum of harmonic analysis and its applications. They are divided into the following parts: Volume I · Sampling Theory · Remote Sensing · Mathematics of Data Processing · Applications of Data Processing Volume II · Measure Theory · Filtering · Operator Theory · Biomathematics Each part provides state-of-the-art results, with contributions from an impressive array of mathematicians, engineers, and scientists in academia, industry, and government. Excursions in Harmonic Analysis: The February Fourier Talks at the Norbert Wiener Center is an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics.

Excursions in Harmonic Analysis, Volume 4

Excursions in Harmonic Analysis, Volume 4
Author: Radu Balan
Publisher: Birkhäuser
Total Pages: 440
Release: 2015-10-20
Genre: Mathematics
ISBN: 3319201883

This volume consists of contributions spanning a wide spectrum of harmonic analysis and its applications written by speakers at the February Fourier Talks from 2002 – 2013. Containing cutting-edge results by an impressive array of mathematicians, engineers and scientists in academia, industry and government, it will be an excellent reference for graduate students, researchers and professionals in pure and applied mathematics, physics and engineering. Topics covered include: Special Topics in Harmonic Analysis Applications and Algorithms in the Physical Sciences Gabor Theory RADAR and Communications: Design, Theory, and Applications The February Fourier Talks are held annually at the Norbert Wiener Center for Harmonic Analysis and Applications. Located at the University of Maryland, College Park, the Norbert Wiener Center provides a state-of- the-art research venue for the broad emerging area of mathematical engineering.

Excursions in Harmonic Analysis, Volume 5

Excursions in Harmonic Analysis, Volume 5
Author: Radu Balan
Publisher: Birkhäuser
Total Pages: 346
Release: 2017-06-20
Genre: Mathematics
ISBN: 3319547119

This volume consists of contributions spanning a wide spectrum of harmonic analysis and its applications written by speakers at the February Fourier Talks from 2002 – 2016. Containing cutting-edge results by an impressive array of mathematicians, engineers, and scientists in academia, industry and government, it will be an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, physics, and engineering. Topics covered include: Theoretical harmonic analysis Image and signal processing Quantization Algorithms and representations The February Fourier Talks are held annually at the Norbert Wiener Center for Harmonic Analysis and Applications. Located at the University of Maryland, College Park, the Norbert Wiener Center provides a state-of- the-art research venue for the broad emerging area of mathematical engineering.

Excursions in Harmonic Analysis, Volume 3

Excursions in Harmonic Analysis, Volume 3
Author: Radu Balan
Publisher: Birkhäuser
Total Pages: 344
Release: 2015-06-02
Genre: Mathematics
ISBN: 331913230X

This volume consists of contributions spanning a wide spectrum of harmonic analysis and its applications written by speakers at the February Fourier Talks from 2002 – 2013. Containing cutting-edge results by an impressive array of mathematicians, engineers, and scientists in academia, industry, and government, it will be an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, physics, and engineering. Topics covered include · spectral analysis and correlation; · radar and communications: design, theory, and applications; · sparsity · special topics in harmonic analysis. The February Fourier Talks are held annually at the Norbert Wiener Center for Harmonic Analysis and Applications. Located at the University of Maryland, College Park, the Norbert Wiener Center provides a state-of- the-art research venue for the broad emerging area of mathematical engineering.

Excursions in Harmonic Analysis, Volume 2

Excursions in Harmonic Analysis, Volume 2
Author: Travis D Andrews
Publisher: Springer Science & Business Media
Total Pages: 461
Release: 2013-01-04
Genre: Mathematics
ISBN: 0817683798

The Norbert Wiener Center for Harmonic Analysis and Applications provides a state-of-the-art research venue for the broad emerging area of mathematical engineering in the context of harmonic analysis. This two-volume set consists of contributions from speakers at the February Fourier Talks (FFT) from 2006-2011. The FFT are organized by the Norbert Wiener Center in the Department of Mathematics at the University of Maryland, College Park. These volumes span a large spectrum of harmonic analysis and its applications. They are divided into the following parts: Volume I · Sampling Theory · Remote Sensing · Mathematics of Data Processing · Applications of Data Processing Volume II · Measure Theory · Filtering · Operator Theory · Biomathematics Each part provides state-of-the-art results, with contributions from an impressive array of mathematicians, engineers, and scientists in academia, industry, and government. Excursions in Harmonic Analysis: The February Fourier Talks at the Norbert Wiener Center is an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics.

Harmonic and Applied Analysis

Harmonic and Applied Analysis
Author: Filippo De Mari
Publisher: Springer Nature
Total Pages: 316
Release: 2021-12-13
Genre: Mathematics
ISBN: 3030866645

Deep connections exist between harmonic and applied analysis and the diverse yet connected topics of machine learning, data analysis, and imaging science. This volume explores these rapidly growing areas and features contributions presented at the second and third editions of the Summer Schools on Applied Harmonic Analysis, held at the University of Genova in 2017 and 2019. Each chapter offers an introduction to essential material and then demonstrates connections to more advanced research, with the aim of providing an accessible entrance for students and researchers. Topics covered include ill-posed problems; concentration inequalities; regularization and large-scale machine learning; unitarization of the radon transform on symmetric spaces; and proximal gradient methods for machine learning and imaging.

Harmonic Analysis

Harmonic Analysis
Author: María Cristina Pereyra
Publisher: American Mathematical Soc.
Total Pages: 437
Release: 2012
Genre: Mathematics
ISBN: 0821875663

Conveys the remarkable beauty and applicability of the ideas that have grown from Fourier theory. It presents for an advanced undergraduate and beginning graduate student audience the basics of harmonic analysis, from Fourier's study of the heat equation, and the decomposition of functions into sums of cosines and sines (frequency analysis), to dyadic harmonic analysis, and the decomposition of functions into a Haar basis (time localization).

New Trends in Applied Harmonic Analysis

New Trends in Applied Harmonic Analysis
Author: Akram Aldroubi
Publisher: Birkhäuser
Total Pages: 356
Release: 2016-04-21
Genre: Mathematics
ISBN: 3319278738

This volume is a selection of written notes corresponding to courses taught at the CIMPA School: "New Trends in Applied Harmonic Analysis: Sparse Representations, Compressed Sensing and Multifractal Analysis". New interactions between harmonic analysis and signal and image processing have seen striking development in the last 10 years, and several technological deadlocks have been solved through the resolution of deep theoretical problems in harmonic analysis. New Trends in Applied Harmonic Analysis focuses on two particularly active areas that are representative of such advances: multifractal analysis, and sparse representation and compressed sensing. The contributions are written by leaders in these areas, and cover both theoretical aspects and applications. This work should prove useful not only to PhD students and postdocs in mathematics and signal and image processing, but also to researchers working in related topics.

Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science

Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science
Author: Isaac Pesenson
Publisher: Birkhäuser
Total Pages: 512
Release: 2017-08-09
Genre: Mathematics
ISBN: 3319555561

The second of a two volume set on novel methods in harmonic analysis, this book draws on a number of original research and survey papers from well-known specialists detailing the latest innovations and recently discovered links between various fields. Along with many deep theoretical results, these volumes contain numerous applications to problems in signal processing, medical imaging, geodesy, statistics, and data science. The chapters within cover an impressive range of ideas from both traditional and modern harmonic analysis, such as: the Fourier transform, Shannon sampling, frames, wavelets, functions on Euclidean spaces, analysis on function spaces of Riemannian and sub-Riemannian manifolds, Fourier analysis on manifolds and Lie groups, analysis on combinatorial graphs, sheaves, co-sheaves, and persistent homologies on topological spaces. Volume II is organized around the theme of recent applications of harmonic analysis to function spaces, differential equations, and data science, covering topics such as: The classical Fourier transform, the non-linear Fourier transform (FBI transform), cardinal sampling series and translation invariant linear systems. Recent results concerning harmonic analysis on non-Euclidean spaces such as graphs and partially ordered sets. Applications of harmonic analysis to data science and statistics Boundary-value problems for PDE's including the Runge–Walsh theorem for the oblique derivative problem of physical geodesy.