Evolving Intelligent Systems
Download Evolving Intelligent Systems full books in PDF, epub, and Kindle. Read online free Evolving Intelligent Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Crina Grosan |
Publisher | : Springer Science & Business Media |
Total Pages | : 456 |
Release | : 2011-07-29 |
Genre | : Technology & Engineering |
ISBN | : 364221004X |
Computational intelligence is a well-established paradigm, where new theories with a sound biological understanding have been evolving. The current experimental systems have many of the characteristics of biological computers (brains in other words) and are beginning to be built to perform a variety of tasks that are difficult or impossible to do with conventional computers. As evident, the ultimate achievement in this field would be to mimic or exceed human cognitive capabilities including reasoning, recognition, creativity, emotions, understanding, learning and so on. This book comprising of 17 chapters offers a step-by-step introduction (in a chronological order) to the various modern computational intelligence tools used in practical problem solving. Staring with different search techniques including informed and uninformed search, heuristic search, minmax, alpha-beta pruning methods, evolutionary algorithms and swarm intelligent techniques; the authors illustrate the design of knowledge-based systems and advanced expert systems, which incorporate uncertainty and fuzziness. Machine learning algorithms including decision trees and artificial neural networks are presented and finally the fundamentals of hybrid intelligent systems are also depicted. Academics, scientists as well as engineers engaged in research, development and application of computational intelligence techniques, machine learning and data mining would find the comprehensive coverage of this book invaluable.
Author | : Plamen Angelov |
Publisher | : John Wiley & Sons |
Total Pages | : 464 |
Release | : 2010-03-25 |
Genre | : Computers |
ISBN | : 9780470569955 |
From theory to techniques, the first all-in-one resource for EIS There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on the balance between novel theoretical results and solutions and practical real-life applications. Explains the following fundamental approaches for developing evolving intelligent systems (EIS): the Hierarchical Prioritized Structure the Participatory Learning Paradigm the Evolving Takagi-Sugeno fuzzy systems (eTS+) the evolving clustering algorithm that stems from the well-known Gustafson-Kessel offline clustering algorithm Emphasizes the importance and increased interest in online processing of data streams Outlines the general strategy of using the fuzzy dynamic clustering as a foundation for evolvable information granulation Presents a methodology for developing robust and interpretable evolving fuzzy rule-based systems Introduces an integrated approach to incremental (real-time) feature extraction and classification Proposes a study on the stability of evolving neuro-fuzzy recurrent networks Details methodologies for evolving clustering and classification Reveals different applications of EIS to address real problems in areas of: evolving inferential sensors in chemical and petrochemical industry learning and recognition in robotics Features downloadable software resources Evolving Intelligent Systems is the one-stop reference guide for both theoretical and practical issues for computer scientists, engineers, researchers, applied mathematicians, machine learning and data mining experts, graduate students, and professionals.
Author | : Edwin Lughofer |
Publisher | : Springer |
Total Pages | : 467 |
Release | : 2011-01-31 |
Genre | : Technology & Engineering |
ISBN | : 3642180876 |
In today’s real-world applications, there is an increasing demand of integrating new information and knowledge on-demand into model building processes to account for changing system dynamics, new operating conditions, varying human behaviors or environmental influences. Evolving fuzzy systems (EFS) are a powerful tool to cope with this requirement, as they are able to automatically adapt parameters, expand their structure and extend their memory on-the-fly, allowing on-line/real-time modeling. This book comprises several evolving fuzzy systems approaches which have emerged during the last decade and highlights the most important incremental learning methods used. The second part is dedicated to advanced concepts for increasing performance, robustness, process-safety and reliability, for enhancing user-friendliness and enlarging the field of applicability of EFS and for improving the interpretability and understandability of the evolved models. The third part underlines the usefulness and necessity of evolving fuzzy systems in several online real-world application scenarios, provides an outline of potential future applications and raises open problems and new challenges for the next generation evolving systems, including human-inspired evolving machines. The book includes basic principles, concepts, algorithms and theoretic results underlined by illustrations. It is dedicated to researchers from the field of fuzzy systems, machine learning, data mining and system identification as well as engineers and technicians who apply data-driven modeling techniques in real-world systems.
Author | : Keith L. Downing |
Publisher | : MIT Press |
Total Pages | : 499 |
Release | : 2015-05-29 |
Genre | : Computers |
ISBN | : 0262029138 |
An investigation of intelligence as an emergent phenomenon, integrating the perspectives of evolutionary biology, neuroscience, and artificial intelligence. Emergence—the formation of global patterns from solely local interactions—is a frequent and fascinating theme in the scientific literature both popular and academic. In this book, Keith Downing undertakes a systematic investigation of the widespread (if often vague) claim that intelligence is an emergent phenomenon. Downing focuses on neural networks, both natural and artificial, and how their adaptability in three time frames—phylogenetic (evolutionary), ontogenetic (developmental), and epigenetic (lifetime learning)—underlie the emergence of cognition. Integrating the perspectives of evolutionary biology, neuroscience, and artificial intelligence, Downing provides a series of concrete examples of neurocognitive emergence. Doing so, he offers a new motivation for the expanded use of bio-inspired concepts in artificial intelligence (AI), in the subfield known as Bio-AI. One of Downing's central claims is that two key concepts from traditional AI, search and representation, are key to understanding emergent intelligence as well. He first offers introductory chapters on five core concepts: emergent phenomena, formal search processes, representational issues in Bio-AI, artificial neural networks (ANNs), and evolutionary algorithms (EAs). Intermediate chapters delve deeper into search, representation, and emergence in ANNs, EAs, and evolving brains. Finally, advanced chapters on evolving artificial neural networks and information-theoretic approaches to assessing emergence in neural systems synthesize earlier topics to provide some perspective, predictions, and pointers for the future of Bio-AI.
Author | : Ricardo Jardim-Goncalves |
Publisher | : Springer Nature |
Total Pages | : 367 |
Release | : 2020-03-03 |
Genre | : Technology & Engineering |
ISBN | : 3030387046 |
From artificial neural net / game theory / semantic applications, to modeling tools, smart manufacturing systems, and data science research – this book offers a broad overview of modern intelligent methods and applications of machine learning, evolutionary computation, Industry 4.0 technologies, and autonomous agents leading to the Internet of Things and potentially a new technological revolution. Though chiefly intended for IT professionals, it will also help a broad range of users of future emerging technologies adapt to the new smart / intelligent wave. In separate chapters, the book highlights fourteen successful examples of recent advances in the rapidly evolving area of intelligent systems. Covering major European projects paving the way to a serious smart / intelligent collaboration, the chapters explore e.g. cyber-security issues, 3D digitization, aerial robots, and SMEs that have introduced cyber-physical production systems. Taken together, they offer unique insights into contemporary artificial intelligence and its potential for innovation.
Author | : Mitsuo Gen |
Publisher | : Springer Science & Business Media |
Total Pages | : 218 |
Release | : 2009-03-12 |
Genre | : Computers |
ISBN | : 3540959777 |
This book offers fourteen select papers presented at the recent Asia-Pacific Symposia on Intelligent and Evolutionary Systems. They illustrate the breadth of research in the field with applications ranging from business to medicine to network optimization.
Author | : Lingfeng Wang |
Publisher | : World Scientific |
Total Pages | : 267 |
Release | : 2006 |
Genre | : Technology & Engineering |
ISBN | : 9812773142 |
This invaluable book comprehensively describes evolutionary robotics and computational intelligence, and how different computational intelligence techniques are applied to robotic system design. It embraces the most widely used evolutionary approaches with their merits and drawbacks, presents some related experiments for robotic behavior evolution and the results achieved, and shows promising future research directions. Clarity of explanation is emphasized such that a modest knowledge of basic evolutionary computation, digital circuits and engineering design will suffice for a thorough understanding of the material. The book is ideally suited to computer scientists, practitioners and researchers keen on computational intelligence techniques, especially the evolutionary algorithms in autonomous robotics at both the hardware and software levels. Sample Chapter(s). Chapter 1: Artificial Evolution Based Autonomous Robot Navigation (184 KB). Contents: Artificial Evolution Based Autonomous Robot Navigation; Evolvable Hardware in Evolutionary Robotics; FPGA-Based Autonomous Robot Navigation via Intrinsic Evolution; Intelligent Sensor Fusion and Learning for Autonomous Robot Navigation; Task-Oriented Developmental Learning for Humanoid Robots; Bipedal Walking Through Reinforcement Learning; Swing Time Generation for Bipedal Walking Control Using GA Tuned Fuzzy Logic Controller; Bipedal Walking: Stance Ankle Behavior Optimization Using Genetic Algorithm. Readership: Researchers in evolutionary robotics, and graduate and advanced undergraduate students in computational intelligence.
Author | : Chiong, Raymond |
Publisher | : IGI Global |
Total Pages | : 359 |
Release | : 2009-09-30 |
Genre | : Business & Economics |
ISBN | : 1605667994 |
"This volume offers intriguing applications, reviews and additions to the methodology of intelligent computing, presenting the emerging trends of state-of-the-art intelligent systems and their practical applications"--Provided by publisher.
Author | : Michael Negnevitsky |
Publisher | : Pearson Education |
Total Pages | : 454 |
Release | : 2005 |
Genre | : Computers |
ISBN | : 9780321204660 |
Keeping the maths to a minimum, Negnevitsky explains the principles of AI, demonstrates how systems are built, what they are useful for and how to choose the right tool for the job.
Author | : Ajith Abraham |
Publisher | : Springer Science & Business Media |
Total Pages | : 456 |
Release | : 2008-01-03 |
Genre | : Computers |
ISBN | : 3540753958 |
This edited volume deals with the theoretical and methodological aspects, as well as various evolutionary algorithm applications to many real world problems originating from science, technology, business and commerce. It comprises 15 chapters including an introductory chapter which covers the fundamental definitions and outlines some important research challenges. Chapters were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.