Evolutionary Computation in Scheduling

Evolutionary Computation in Scheduling
Author: Amir H. Gandomi
Publisher: John Wiley & Sons
Total Pages: 368
Release: 2020-05-19
Genre: Mathematics
ISBN: 111957384X

Presents current developments in the field of evolutionary scheduling and demonstrates the applicability of evolutionary computational techniques to solving scheduling problems This book provides insight into the use of evolutionary computations (EC) in real-world scheduling, showing readers how to choose a specific evolutionary computation and how to validate the results using metrics and statistics. It offers a spectrum of real-world optimization problems, including applications of EC in industry and service organizations such as healthcare scheduling, aircraft industry, school timetabling, manufacturing systems, and transportation scheduling in the supply chain. It also features problems with different degrees of complexity, practical requirements, user constraints, and MOEC solution approaches. Evolutionary Computation in Scheduling starts with a chapter on scientometric analysis to analyze scientific literature in evolutionary computation in scheduling. It then examines the role and impacts of ant colony optimization (ACO) in job shop scheduling problems, before presenting the application of the ACO algorithm in healthcare scheduling. Other chapters explore task scheduling in heterogeneous computing systems and truck scheduling using swarm intelligence, application of sub-population scheduling algorithm in multi-population evolutionary dynamic optimization, task scheduling in cloud environments, scheduling of robotic disassembly in remanufacturing using the bees algorithm, and more. This book: Provides a representative sampling of real-world problems currently being tackled by practitioners Examines a variety of single-, multi-, and many-objective problems that have been solved using evolutionary computations, including evolutionary algorithms and swarm intelligence Consists of four main parts: Introduction to Scheduling Problems, Computational Issues in Scheduling Problems, Evolutionary Computation, and Evolutionary Computations for Scheduling Problems Evolutionary Computation in Scheduling is ideal for engineers in industries, research scholars, advanced undergraduates and graduate students, and faculty teaching and conducting research in Operations Research and Industrial Engineering.

Evolutionary Search and the Job Shop

Evolutionary Search and the Job Shop
Author: Dirk C. Mattfeld
Publisher: Springer Science & Business Media
Total Pages: 162
Release: 2013-04-17
Genre: Business & Economics
ISBN: 3662117126

Production scheduling dictates highly constrained mathematical models with complex and often contradicting objectives. Evolutionary algorithms can be formulated almost independently of the detailed shaping of the problems under consideration. As one would expect, a weak formulation of the problem in the algorithm comes along with a quite inefficient search. This book discusses the suitability of genetic algorithms for production scheduling and presents an approach which produces results comparable with those of more tailored optimization techniques.

Evolutionary Computation in Scheduling

Evolutionary Computation in Scheduling
Author: Amir H. Gandomi
Publisher: John Wiley & Sons
Total Pages: 343
Release: 2020-04-09
Genre: Mathematics
ISBN: 1119573874

Presents current developments in the field of evolutionary scheduling and demonstrates the applicability of evolutionary computational techniques to solving scheduling problems This book provides insight into the use of evolutionary computations (EC) in real-world scheduling, showing readers how to choose a specific evolutionary computation and how to validate the results using metrics and statistics. It offers a spectrum of real-world optimization problems, including applications of EC in industry and service organizations such as healthcare scheduling, aircraft industry, school timetabling, manufacturing systems, and transportation scheduling in the supply chain. It also features problems with different degrees of complexity, practical requirements, user constraints, and MOEC solution approaches. Evolutionary Computation in Scheduling starts with a chapter on scientometric analysis to analyze scientific literature in evolutionary computation in scheduling. It then examines the role and impacts of ant colony optimization (ACO) in job shop scheduling problems, before presenting the application of the ACO algorithm in healthcare scheduling. Other chapters explore task scheduling in heterogeneous computing systems and truck scheduling using swarm intelligence, application of sub-population scheduling algorithm in multi-population evolutionary dynamic optimization, task scheduling in cloud environments, scheduling of robotic disassembly in remanufacturing using the bees algorithm, and more. This book: Provides a representative sampling of real-world problems currently being tackled by practitioners Examines a variety of single-, multi-, and many-objective problems that have been solved using evolutionary computations, including evolutionary algorithms and swarm intelligence Consists of four main parts: Introduction to Scheduling Problems, Computational Issues in Scheduling Problems, Evolutionary Computation, and Evolutionary Computations for Scheduling Problems Evolutionary Computation in Scheduling is ideal for engineers in industries, research scholars, advanced undergraduates and graduate students, and faculty teaching and conducting research in Operations Research and Industrial Engineering.

Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling

Evolutionary and Memetic Computing for Project Portfolio Selection and Scheduling
Author: Kyle Robert Harrison
Publisher: Springer Nature
Total Pages: 218
Release: 2021-11-13
Genre: Technology & Engineering
ISBN: 3030883159

This book consists of eight chapters, authored by distinguished researchers and practitioners, that highlight the state of the art and recent trends in addressing the project portfolio selection and scheduling problem (PPSSP) across a variety of domains, particularly defense, social programs, supply chains, and finance. Many organizations face the challenge of selecting and scheduling a subset of available projects subject to various resource and operational constraints. In the simplest scenario, the primary objective for an organization is to maximize the value added through funding and implementing a portfolio of projects, subject to the available budget. However, there are other major difficulties that are often associated with this problem such as qualitative project benefits, multiple conflicting objectives, complex project interdependencies, workforce and manufacturing constraints, and deep uncertainty regarding project costs, benefits, and completion times. It is well known that the PPSSP is an NP-hard problem and, thus, there is no known polynomial-time algorithm for this problem. Despite the complexity associated with solving the PPSSP, many traditional approaches to this problem make use of exact solvers. While exact solvers provide definitive optimal solutions, they quickly become prohibitively expensive in terms of computation time when the problem size is increased. In contrast, evolutionary and memetic computing afford the capability for autonomous heuristic approaches and expert knowledge to be combined and thereby provide an efficient means for high-quality approximation solutions to be attained. As such, these approaches can provide near real-time decision support information for portfolio design that can be used to augment and improve existing human-centric strategic decision-making processes. This edited book provides the reader with a broad overview of the PPSSP, its associated challenges, and approaches to addressing the problem using evolutionary and memetic computing.

OmeGA

OmeGA
Author: Dimitri Knjazew
Publisher: Springer Science & Business Media
Total Pages: 180
Release: 2002-01-31
Genre: Computers
ISBN: 9780792374602

In this text, Knjazew (SAP AG, Germany) develops a permutation- oriented competent genetic algorithm (GA) and demonstrates its performance and scalability on hard permutation problems. Coverage includes background information about competent GAs; development of the ordering messy genetic algorithm (OmeGA); a detailed scalability and performance analysis of the method; application of the OmeGA to a real world scheduling problem that has been used as a standard benchmark within SAP (a leading German enterprise resource planning software vendor); and suggestions for future research in this area. Requires a basic knowledge of GAs. This book could be used in classes on genetic and evolutionary computation, and in operations research. Annotation copyrighted by Book News Inc., Portland, OR.

Modeling Applications and Theoretical Innovations in Interdisciplinary Evolutionary Computation

Modeling Applications and Theoretical Innovations in Interdisciplinary Evolutionary Computation
Author: Samuelson Hong, Wei-Chiang
Publisher: IGI Global
Total Pages: 357
Release: 2013-03-31
Genre: Computers
ISBN: 1466636297

Evolutionary computation has emerged as a major topic in the scientific community as many of its techniques have successfully been applied to solve problems in a wide variety of fields. Modeling Applications and Theoretical Innovations in Interdisciplinary Evolutionary Computation provides comprehensive research on emerging theories and its aspects on intelligent computation. Particularly focusing on breaking trends in evolutionary computing, algorithms, and programming, this publication serves to support professionals, government employees, policy and decision makers, as well as students in this scientific field.

Introduction to Evolutionary Algorithms

Introduction to Evolutionary Algorithms
Author: Xinjie Yu
Publisher: Springer Science & Business Media
Total Pages: 427
Release: 2010-06-10
Genre: Computers
ISBN: 1849961298

Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: • genetic algorithms, • differential evolution, • swarm intelligence, and • artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline.

Recent Advances in Swarm Intelligence and Evolutionary Computation

Recent Advances in Swarm Intelligence and Evolutionary Computation
Author: Xin-She Yang
Publisher: Springer
Total Pages: 295
Release: 2014-12-27
Genre: Technology & Engineering
ISBN: 331913826X

This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference for graduates, lecturers, engineers and researchers in computer science, evolutionary computing, artificial intelligence, machine learning, computational intelligence, data mining, engineering optimization and designs.

Applications of Evolutionary Computation

Applications of Evolutionary Computation
Author: Paul Kaufmann (Computer scientist)
Publisher:
Total Pages: 642
Release: 2019
Genre: Evolutionary computation
ISBN: 9783030166939

This book constitutes the refereed proceedings of the 22nd International Conference on Applications of Evolutionary Computation, EvoApplications 2019, held in Leipzig, Germany, in April 2019, co-located with the Evo*2019 events EuroGP, EvoCOP and EvoMUSART. The 44 revised full papers presented were carefully reviewed and selected from 66 submissions. They were organized in topical sections named: Engineering and Real World Applications; Games; General; Image and Signal Processing; Life Sciences; Networks and Distributed Systems; Neuroevolution and Data Analytics; Numerical Optimization: Theory, Benchmarks, and Applications; Robotics. --

Evolutionary Computation

Evolutionary Computation
Author: D. Dumitrescu
Publisher: CRC Press
Total Pages: 424
Release: 2000-06-22
Genre: Computers
ISBN: 9780849305887

Rapid advances in evolutionary computation have opened up a world of applications-a world rapidly growing and evolving. Decision making, neural networks, pattern recognition, complex optimization/search tasks, scheduling, control, automated programming, and cellular automata applications all rely on evolutionary computation. Evolutionary Computation presents the basic principles of evolutionary computing: genetic algorithms, evolution strategies, evolutionary programming, genetic programming, learning classifier systems, population models, and applications. It includes detailed coverage of binary and real encoding, including selection, crossover, and mutation, and discusses the (m+l) and (m,l) evolution strategy principles. The focus then shifts to applications: decision strategy selection, training and design of neural networks, several approaches to pattern recognition, cellular automata, applications of genetic programming, and more.