Evaporation And Rupture Of Liquid Bridges
Download Evaporation And Rupture Of Liquid Bridges full books in PDF, epub, and Kindle. Read online free Evaporation And Rupture Of Liquid Bridges ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Lyesse Laloui |
Publisher | : Springer Science & Business Media |
Total Pages | : 331 |
Release | : 2012-08-22 |
Genre | : Science |
ISBN | : 3642324924 |
Significant advancements in the experimental analysis of soils and shales have been achieved during the last few decades. Outstanding progress in the field has led to the theoretical development of geomechanical theories and important engineering applications. This book provides the reader with an overview of recent advances in a variety of advanced experimental techniques and results for the analysis of the behaviour of geomaterials under multiphysical testing conditions. Modern trends in experimental geomechanics for soils and shales are discussed, including testing materials in variably saturated conditions, non-isothermal experiments, micro-scale investigations and image analysis techniques. Six theme papers from leading researchers in experimental geomechanics are also included. This book is intended for postgraduate students, researchers and practitioners in fields where multiphysical testing of soils and shales plays a fundamental role, such as unsaturated soil and rock mechanics, petroleum engineering, nuclear waste storage engineering, unconventional energy resources and CO2 geological sequestration.
Author | : Wade H. Shafer |
Publisher | : Springer Science & Business Media |
Total Pages | : 307 |
Release | : 2013-11-21 |
Genre | : Science |
ISBN | : 1475757794 |
Masters Theses in the Pure and Applied Sciences was first conceived, published, and dis· seminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS) *at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dissemination phases of the ac· tivity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volume were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 20 (thesis year 1975) a total of 10,374 theses titles from 28 Canadian and 239 United States universities. We are sure that this broader base for theses titles reported will greatly enhance the value of this important annual reference work. The organization of Volume 20 is identical to that of past years. It consists of theses titles arranged by discipline and by university within each discipline.
Author | : Milo D. Koretsky |
Publisher | : John Wiley & Sons |
Total Pages | : 724 |
Release | : 2012-12-17 |
Genre | : Technology & Engineering |
ISBN | : 0470259612 |
Chemical engineers face the challenge of learning the difficult concept and application of entropy and the 2nd Law of Thermodynamics. By following a visual approach and offering qualitative discussions of the role of molecular interactions, Koretsky helps them understand and visualize thermodynamics. Highlighted examples show how the material is applied in the real world. Expanded coverage includes biological content and examples, the Equation of State approach for both liquid and vapor phases in VLE, and the practical side of the 2nd Law. Engineers will then be able to use this resource as the basis for more advanced concepts.
Author | : Pierre Lambert |
Publisher | : MDPI |
Total Pages | : 240 |
Release | : 2019-10-21 |
Genre | : Technology & Engineering |
ISBN | : 3039215647 |
Building on advances in miniaturization and soft matter, surface tension effects are a major key to the development of soft/fluidic microrobotics. Benefiting from scaling laws, surface tension and capillary effects can enable sensing, actuation, adhesion, confinement, compliance, and other structural and functional properties necessary in micro- and nanosystems. Various applications are under development: microfluidic and lab-on-chip devices, soft gripping and manipulation of particles, colloidal and interfacial assemblies, fluidic/droplet mechatronics. The capillary action is ubiquitous in drops, bubbles and menisci, opening a broad spectrum of technological solutions and scientific investigations. Identified grand challenges to the establishment of fluidic microrobotics include mastering the dynamics of capillary effects, controlling the hysteresis arising from wetting and evaporation, improving the dispensing and handling of tiny droplets, and developing a mechatronic approach for the control and programming of surface tension effects. In this Special Issue of Micromachines, we invite contributions covering all aspects of microscale engineering relying on surface tension. Particularly, we welcome contributions on fundamentals or applications related to: Drop-botics: fluidic or surface tension-based micro/nanorobotics: capillary manipulation, gripping, and actuation, sensing, folding, propulsion and bio-inspired solutions; Control of surface tension effects: surface tension gradients, active surfactants, thermocapillarity, electrowetting, elastocapillarity; Handling of droplets, bubbles and liquid bridges: dispensing, confinement, displacement, stretching, rupture, evaporation; Capillary forces: modelling, measurement, simulation; Interfacial engineering: smart liquids, surface treatments; Interfacial fluidic and capillary assembly of colloids and devices; Biological applications of surface tension, including lab-on-chip and organ-on-chip systems.
Author | : K. L. Mittal |
Publisher | : John Wiley & Sons |
Total Pages | : 720 |
Release | : 2021-03-02 |
Genre | : Technology & Engineering |
ISBN | : 111965484X |
Activity in the arena of surface chemistry and adhesion aspects in cosmetics is substantial, but the information is scattered in many diverse publications media and no book exists which discusses surface chemistry and adhesion in cosmetics in unified manner. This book containing 15 chapters written by eminent researchers from academia and industry is divided into three parts: Part 1: General Topics; Part 2: Surface Chemistry Aspects; and Part 3: Wetting and Adhesion Aspects. The topics covered include: Lip biophysical properties and characterization; use of advanced silicone materials in long-lasting cosmetics; non-aqueous dispersions of acrylate copolymers in lipsticks; cosmetic oils in Lipstick structure; chemical structure of the hair surface, surface forces and interactions; AFM for hair surface characterization; application of AFM in characterizing hair, skin and cosmetic deposition; SIMS as a surface analysis method for hair, skin and cosmetics; surface tensiometry approach to characterize cosmetic products; spreading of hairsprays on hair; color transfer from long-wear face foundation products; interaction of polyelectrolytes and surfactants on hair surfaces; cosmetic adhesion to facial skin; and adhesion aspects in semi-permanent mascara; lipstick adhesion measurement.
Author | : Wen-Ching Yang |
Publisher | : Elsevier |
Total Pages | : 909 |
Release | : 1998-12-31 |
Genre | : Technology & Engineering |
ISBN | : 0815517238 |
This volume, Fluidization, Solids Handling, and Processing, is the first of a series of volumes on "Particle Technology". Particles are important products of chemical process industries spanning the basic and specialty chemicals, agricultural products, pharmaceuticals, paints, dyestuffs and pigments, cement, ceramics, and electronic materials. Solids handling and processing technologies are thus essential to the operation and competitiveness of these industries. Fluidization technology is employed not only in chemical production, it also is applied in coal gasification and combustion for power generation, mineral processing, food processing, soil washing and other related waste treatment, environmental remediation, and resource recovery processes. The FCC (Fluid Catalytic Cracking) technology commonly employed in the modern petroleum refineries is also based on fluidization principles.
Author | : Jonathan P.K. Seville |
Publisher | : Butterworth-Heinemann |
Total Pages | : 296 |
Release | : 2016-05-20 |
Genre | : Technology & Engineering |
ISBN | : 0080983448 |
Particle Technology and Engineering presents the basic knowledge and fundamental concepts that are needed by engineers dealing with particles and powders. The book provides a comprehensive reference and introduction to the topic, ranging from single particle characterization to bulk powder properties, from particle-particle interaction to particle-fluid interaction, from fundamental mechanics to advanced computational mechanics for particle and powder systems. The content focuses on fundamental concepts, mechanistic analysis and computational approaches. The first six chapters present basic information on properties of single particles and powder systems and their characterisation (covering the fundamental characteristics of bulk solids (powders) and building an understanding of density, surface area, porosity, and flow), as well as particle-fluid interactions, gas-solid and liquid-solid systems, with applications in fluidization and pneumatic conveying. The last four chapters have an emphasis on the mechanics of particle and powder systems, including the mechanical behaviour of powder systems during storage and flow, contact mechanics of particles, discrete element methods for modelling particle systems, and finite element methods for analysing powder systems. This thorough guide is beneficial to undergraduates in chemical and other types of engineering, to chemical and process engineers in industry, and early stage researchers. It also provides a reference to experienced researchers on mathematical and mechanistic analysis of particulate systems, and on advanced computational methods. - Provides a simple introduction to core topics in particle technology: characterisation of particles and powders: interaction between particles, gases and liquids; and some useful examples of gas-solid and liquid-solid systems - Introduces the principles and applications of two useful computational approaches: discrete element modelling and finite element modelling - Enables engineers to build their knowledge and skills and to enhance their mechanistic understanding of particulate systems
Author | : Henk Huinink |
Publisher | : Morgan & Claypool Publishers |
Total Pages | : 115 |
Release | : 2016-09-06 |
Genre | : Science |
ISBN | : 1681742977 |
This book introduces the reader into the field of the physics of processes occurring in porous media. It targets Master and PhD students who need to gain fundamental understanding the impact of confinement on transport and phase change processes. The book gives brief overviews of topics like thermodynamics, capillarity and fluid mechanics in order to launch the reader smoothly into the realm of porous media. In-depth discussions are given of phase change phenomena in porous media, single phase flow, unsaturated flow and multiphase flow. In order to make the topics concrete the book contains numerous example calculations. Further, as much experimental data as possible is plugged in to give the reader the ability to quantify phenomena.
Author | : Rui Wu |
Publisher | : CRC Press |
Total Pages | : 236 |
Release | : 2022-11-09 |
Genre | : Technology & Engineering |
ISBN | : 1000763676 |
Mass Transfer–Driven Evaporation from Capillary Porous Media offers a comprehensive review of mass transfer–driven drying processes in capillary porous media, including pore-scale and macro-scale experiments and models. It covers kinetics of drying of a single pore, pore-scale experiments and models, macro-scale experiments and models, and understanding of the continuum model from pore-scale studies. The book: Explains the detailed transport processes in porous media during drying. Introduces cutting-edge visualization experiments of drying in porous media. Describes the pore network models of drying in porous media. Discusses the continuum models of drying in porous media based on pore-scale studies. Points out future research opportunities. Aimed at researchers, students and practicing engineers, this work provides vital fundamental and applied information to those working in drying technology, food processes, applied energy, and mechanical and chemical engineering.
Author | : J.P. Seville |
Publisher | : Springer Science & Business Media |
Total Pages | : 384 |
Release | : 2012-12-06 |
Genre | : Technology & Engineering |
ISBN | : 9400914598 |
Over half of the products of the chemical and process industries are sold in a particulate form. The range of such products is vast: from agrochemicals to pigments, from detergents to foods, from plastics to pharmaceuticals. However, surveys of the performance of processes designed to produce particulate products have consistently shown inadequate design and poor reliability. `Particle technology' is a new subject facing new challenges. Chemical and process engineering is becoming less concerned with the design of plants to produce generic simple chemicals (which are often single phase fluids) and is now more concerned with speciality `effect' chemicals which may often be in particulate form. Chemical and process engineers are also being recruited in increasing numbers into areas outside their tranditional fields, such as the food industry, pharmaceuticals and the manufacture of a wide variety of consumer products. This book has been written to meet their needs. It provides comprehensive coverage of the technology of particulate solids, in a form which is both accessible and concise enough to be useful to engineering and science students in the final year of an undergraduate degree, and at Master's level. Although it was written with students of chemical engineering in mind, it will also be of use and interest to students of other disciplines. It comprises an account of the fundamentals of teh subject, illustrated by worked examples, and followed by a wide range of selected applications.