Estimation and Control of Dynamical Systems

Estimation and Control of Dynamical Systems
Author: Alain Bensoussan
Publisher: Springer
Total Pages: 552
Release: 2018-05-23
Genre: Mathematics
ISBN: 3319754564

This book provides a comprehensive presentation of classical and advanced topics in estimation and control of dynamical systems with an emphasis on stochastic control. Many aspects which are not easily found in a single text are provided, such as connections between control theory and mathematical finance, as well as differential games. The book is self-contained and prioritizes concepts rather than full rigor, targeting scientists who want to use control theory in their research in applied mathematics, engineering, economics, and management science. Examples and exercises are included throughout, which will be useful for PhD courses and graduate courses in general. Dr. Alain Bensoussan is Lars Magnus Ericsson Chair at UT Dallas and Director of the International Center for Decision and Risk Analysis which develops risk management research as it pertains to large-investment industrial projects that involve new technologies, applications and markets. He is also Chair Professor at City University Hong Kong.

Dynamic Estimation and Control of Power Systems

Dynamic Estimation and Control of Power Systems
Author: Abhinav Kumar Singh
Publisher: Academic Press
Total Pages: 264
Release: 2018-10-04
Genre: Technology & Engineering
ISBN: 0128140062

Dynamic estimation and control is a fast growing and widely researched field of study that lays the foundation for a new generation of technologies that can dynamically, adaptively and automatically stabilize power systems. This book provides a comprehensive introduction to research techniques for real-time estimation and control of power systems. Dynamic Estimation and Control of Power Systems coherently and concisely explains key concepts in a step by step manner, beginning with the fundamentals and building up to the latest developments of the field. Each chapter features examples to illustrate the main ideas, and effective research tools are presented for signal processing-based estimation of the dynamic states and subsequent control, both centralized and decentralized, as well as linear and nonlinear. Detailed mathematical proofs are included for readers who desire a deeper technical understanding of the methods. This book is an ideal research reference for engineers and researchers working on monitoring and stability of modern grids, as well as postgraduate students studying these topics. It serves to deliver a clear understanding of the tools needed for estimation and control, while also acting as a basis for readers to further develop new and improved approaches in their own research. - Offers the first concise, single resource on dynamic estimation and control of power systems - Provides both an understanding of estimation and control concepts and a comparison of results - Includes detailed case-studies, including MATLAB codes, to explain and demonstrate the concepts presented

Control and Estimation of Systems with Input/Output Delays

Control and Estimation of Systems with Input/Output Delays
Author: Huanshui Zhang
Publisher: Springer
Total Pages: 221
Release: 2007-09-05
Genre: Technology & Engineering
ISBN: 3540711198

Time delays exist in many engineering systems such as transportation, communication, process engineering and networked control systems. In recent years, time delay systems have attracted recurring interests from research community. Much of the effort has been focused on stability analysis and stabilization of time delay systems using the so-called Lyapunov-Krasovskii functional together with a linear matrix inequality approach, which provides an efficient numerical tool for handling systems with delays in state and/or inputs. Recently, some more interesting and fundamental development for systems with input/output (i/o) delays has been made using time domain or frequency domain approaches. These approaches lead to analytical solutions to time delay problems in terms of Riccati equations or spectral factorizations. This monograph presents simple analytical solutions to control and estimation problems for systems with multiple i/o delays via elementary tools such as projection. We propose a re-organized innovation analysis approach for delay systems and establish a duality between optimal control of systems with multiple input delays and smoothing estimation for delay free systems. These appealing new techniques are applied to solve control and estimation problems for systems with multiple i/o delays and state delays under both the H2 and H-infinity performance criteria.

State Estimation and Control for Low-cost Unmanned Aerial Vehicles

State Estimation and Control for Low-cost Unmanned Aerial Vehicles
Author: Chingiz Hajiyev
Publisher: Springer
Total Pages: 239
Release: 2015-06-10
Genre: Technology & Engineering
ISBN: 3319164171

This book discusses state estimation and control procedures for a low-cost unmanned aerial vehicle (UAV). The authors consider the use of robust adaptive Kalman filter algorithms and demonstrate their advantages over the optimal Kalman filter in the context of the difficult and varied environments in which UAVs may be employed. Fault detection and isolation (FDI) and data fusion for UAV air-data systems are also investigated, and control algorithms, including the classical, optimal, and fuzzy controllers, are given for the UAV. The performance of different control methods is investigated and the results compared. State Estimation and Control of Low-Cost Unmanned Aerial Vehicles covers all the important issues for designing a guidance, navigation and control (GNC) system of a low-cost UAV. It proposes significant new approaches that can be exploited by GNC system designers in the future and also reviews the current literature. The state estimation, control and FDI methods are illustrated by examples and MATLABĀ® simulations. State Estimation and Control of Low-Cost Unmanned Aerial Vehicles will be of interest to both researchers in academia and professional engineers in the aerospace industry. Graduate students may also find it useful, and some sections are suitable for an undergraduate readership.

Stochastic Systems

Stochastic Systems
Author: P. R. Kumar
Publisher: SIAM
Total Pages: 371
Release: 2015-12-15
Genre: Mathematics
ISBN: 1611974259

Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.

Constrained Control and Estimation

Constrained Control and Estimation
Author: Graham Goodwin
Publisher: Springer Science & Business Media
Total Pages: 415
Release: 2006-03-30
Genre: Technology & Engineering
ISBN: 184628063X

Recent developments in constrained control and estimation have created a need for this comprehensive introduction to the underlying fundamental principles. These advances have significantly broadened the realm of application of constrained control. - Using the principal tools of prediction and optimisation, examples of how to deal with constraints are given, placing emphasis on model predictive control. - New results combine a number of methods in a unique way, enabling you to build on your background in estimation theory, linear control, stability theory and state-space methods. - Companion web site, continually updated by the authors. Easy to read and at the same time containing a high level of technical detail, this self-contained, new approach to methods for constrained control in design will give you a full understanding of the subject.

Modeling, Estimation and Control of Systems with Uncertainty

Modeling, Estimation and Control of Systems with Uncertainty
Author: G.B. DiMasi
Publisher: Springer Science & Business Media
Total Pages: 478
Release: 2013-03-12
Genre: Science
ISBN: 1461204437

This volume contains the papers that have been presented at the Conference on Modeling and Control of Uncertain Systems held in Sopron, Hungary on September 3-7, 1990, organised within the framework of the activities of the System and Decision Sciences Program of IIASA - the International Institute for Applied Systems Analysis. The importance of the subject has drawn the attention of researchers all over the world since several years. In fact, in most actual applications the knowledge about the system under investigation presents aspects of uncertainty due to measurement errors or poor understanding of the rele vant underlying mechanisms. For this reason models that take into account these intrinsic uncertainties have been used and techniques for the analysis of their behavior as well as for their estimation and control have been devel oped. The main ways to deal with uncertainty consist in its description by stochastic processes or in terms of set-valued dynamics and this volume col lects relevant contributions in both directions. However, in order to avoid undesirable distinctions between these approaches, but on the contrary to stress the unity of ideas, we decided to organize the papers according to the alphabetical order of their authors. We should like to take this opportunity to thank IIASA for supporting the Conference and the Hungarian National Member Organization for the kind hospitality in Sopron. Finally we would like to express our gratitude to Ms. Donna Huchthausen for her valuable secretarial assistance. Vienna, February 20, 1991 GIOVANNI B.

Decentralized Estimation and Control for Multisensor Systems

Decentralized Estimation and Control for Multisensor Systems
Author: Arthur G.O. Mutambara
Publisher: Routledge
Total Pages: 249
Release: 2019-05-20
Genre: Technology & Engineering
ISBN: 1351456504

Decentralized Estimation and Control for Multisensor Systems explores the problem of developing scalable, decentralized estimation and control algorithms for linear and nonlinear multisensor systems. Such algorithms have extensive applications in modular robotics and complex or large scale systems, including the Mars Rover, the Mir station, and Space Shuttle Columbia. Most existing algorithms use some form of hierarchical or centralized structure for data gathering and processing. In contrast, in a fully decentralized system, all information is processed locally. A decentralized data fusion system includes a network of sensor nodes - each with its own processing facility, which together do not require any central processing or central communication facility. Only node-to-node communication and local system knowledge are permitted. Algorithms for decentralized data fusion systems based on the linear information filter have been developed, obtaining decentrally the same results as those in a conventional centralized data fusion system. However, these algorithms are limited, indicating that existing decentralized data fusion algorithms have limited scalability and are wasteful of communications and computation resources. Decentralized Estimation and Control for Multisensor Systems aims to remove current limitations in decentralized data fusion algorithms and to extend the decentralized principle to problems involving local control and actuation. The text discusses: Generalizing the linear Information filter to the problem of estimation for nonlinear systems Developing a decentralized form of the algorithm Solving the problem of fully connected topologies by using generalized model distribution where the nodal system involves only locally relevant states Reducing computational requirements by using smaller local model sizes Defining internodal communication Developing estima

Estimation, Control, and the Discrete Kalman Filter

Estimation, Control, and the Discrete Kalman Filter
Author: Donald E. Catlin
Publisher: Springer Science & Business Media
Total Pages: 286
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 1461245281

In 1960, R. E. Kalman published his celebrated paper on recursive min imum variance estimation in dynamical systems [14]. This paper, which introduced an algorithm that has since been known as the discrete Kalman filter, produced a virtual revolution in the field of systems engineering. Today, Kalman filters are used in such diverse areas as navigation, guid ance, oil drilling, water and air quality, and geodetic surveys. In addition, Kalman's work led to a multitude of books and papers on minimum vari ance estimation in dynamical systems, including one by Kalman and Bucy on continuous time systems [15]. Most of this work was done outside of the mathematics and statistics communities and, in the spirit of true academic parochialism, was, with a few notable exceptions, ignored by them. This text is my effort toward closing that chasm. For mathematics students, the Kalman filtering theorem is a beautiful illustration of functional analysis in action; Hilbert spaces being used to solve an extremely important problem in applied mathematics. For statistics students, the Kalman filter is a vivid example of Bayesian statistics in action. The present text grew out of a series of graduate courses given by me in the past decade. Most of these courses were given at the University of Mas sachusetts at Amherst.