Estimating the Case Fatality Rate for the COVID-19 virus. A Markov Model Application

Estimating the Case Fatality Rate for the COVID-19 virus. A Markov Model Application
Author: Yang Liu
Publisher: GRIN Verlag
Total Pages: 23
Release: 2020-09-14
Genre: Business & Economics
ISBN: 3346244911

Academic Paper from the year 2020 in the subject Economy - Health Economics, grade: A, , language: English, abstract: Europe has became the new epicentre of the COVID-19 pandemic, according to the WHO on 13th March 2020. Sums and ratios of death and confirmed cases were reported daily, however, such statistics vary significantly by country and it is therefore challenging to understand and measure the risk and severity of the novel disease. Prior to the European outbreak, the COVID-19 virus infected more than 80,000 people in China since late 2019 and took the life of several thousands during the past few months. In this paper, a 3-state model Markov model is applied on the data from China to study the dynamics of the disease and the impact of containment strategies. The long-run stable transition probability obtained from the Markov model provides a convenient approach to estimate the case fatality rate of the COVID-19. Also, the estimated life expectancy give a reasonable estimate of time between first symptom and death. Considering the containment strategy implemented in China, the analysis is done for Hubei province and the rest of China respectively. Comparison of daily estimated results over the whole observation period highlight the impact of the strategy while supporting the measures and controls in place. The proposed Markov model produce reasonable and intuitive estimates that help to measure the virulence of the disease and understand the prevalence overtime. While uncertainty persists as the pandemic goes on, our results show that the Markov approaches provide a useful tool for prognosis and epidemic control.

Modeling Financial Time Series with S-PLUS

Modeling Financial Time Series with S-PLUS
Author: Eric Zivot
Publisher: Springer Science & Business Media
Total Pages: 632
Release: 2013-11-11
Genre: Business & Economics
ISBN: 0387217630

The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. This is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This Second Edition is updated to cover S+FinMetrics 2.0 and includes new chapters on copulas, nonlinear regime switching models, continuous-time financial models, generalized method of moments, semi-nonparametric conditional density models, and the efficient method of moments. Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department, and adjunct associate professor of finance in the Business School at the University of Washington. He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the Henry T. Buechel Award for Outstanding Teaching. He is an associate editor of Studies in Nonlinear Dynamics and Econometrics. He has published papers in the leading econometrics journals, including Econometrica, Econometric Theory, the Journal of Business and Economic Statistics, Journal of Econometrics, and the Review of Economics and Statistics. Jiahui Wang is an employee of Ronin Capital LLC. He received a Ph.D. in Economics from the University of Washington in 1997. He has published in leading econometrics journals such as Econometrica and Journal of Business and Economic Statistics, and is the Principal Investigator of National Science Foundation SBIR grants. In 2002 Dr. Wang was selected as one of the "2000 Outstanding Scholars of the 21st Century" by International Biographical Centre.

Applied Mathematical Ecology

Applied Mathematical Ecology
Author: Simon A. Levin
Publisher: Springer Science & Business Media
Total Pages: 498
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642613179

The Second Autumn Course on Mathematical Ecology was held at the Intern ational Centre for Theoretical Physics in Trieste, Italy in November and December of 1986. During the four year period that had elapsed since the First Autumn Course on Mathematical Ecology, sufficient progress had been made in applied mathemat ical ecology to merit tilting the balance maintained between theoretical aspects and applications in the 1982 Course toward applications. The course format, while similar to that of the first Autumn Course on Mathematical Ecology, consequently focused upon applications of mathematical ecology. Current areas of application are almost as diverse as the spectrum covered by ecology. The topiys of this book reflect this diversity and were chosen because of perceived interest and utility to developing countries. Topical lectures began with foundational material mostly derived from Math ematical Ecology: An Introduction (a compilation of the lectures of the 1982 course published by Springer-Verlag in this series, Volume 17) and, when possible, progressed to the frontiers of research. In addition to the course lectures, workshops were arranged for small groups to supplement and enhance the learning experience. Other perspectives were provided through presentations by course participants and speakers at the associated Research Conference. Many of the research papers are in a companion volume, Mathematical Ecology: Proceedings Trieste 1986, published by World Scientific Press in 1988. This book is structured primarily by application area. Part II provides an introduction to mathematical and statistical applications in resource management.

Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases

Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases
Author: Dongmei Chen
Publisher: John Wiley & Sons
Total Pages: 496
Release: 2014-12-31
Genre: Medical
ISBN: 1118629930

Features modern research and methodology on the spread of infectious diseases and showcases a broad range of multi-disciplinary and state-of-the-art techniques on geo-simulation, geo-visualization, remote sensing, metapopulation modeling, cloud computing, and pattern analysis Given the ongoing risk of infectious diseases worldwide, it is crucial to develop appropriate analysis methods, models, and tools to assess and predict the spread of disease and evaluate the risk. Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases features mathematical and spatial modeling approaches that integrate applications from various fields such as geo-computation and simulation, spatial analytics, mathematics, statistics, epidemiology, and health policy. In addition, the book captures the latest advances in the use of geographic information system (GIS), global positioning system (GPS), and other location-based technologies in the spatial and temporal study of infectious diseases. Highlighting the current practices and methodology via various infectious disease studies, Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases features: Approaches to better use infectious disease data collected from various sources for analysis and modeling purposes Examples of disease spreading dynamics, including West Nile virus, bird flu, Lyme disease, pandemic influenza (H1N1), and schistosomiasis Modern techniques such as Smartphone use in spatio-temporal usage data, cloud computing-enabled cluster detection, and communicable disease geo-simulation based on human mobility An overview of different mathematical, statistical, spatial modeling, and geo-simulation techniques Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases is an excellent resource for researchers and scientists who use, manage, or analyze infectious disease data, need to learn various traditional and advanced analytical methods and modeling techniques, and become aware of different issues and challenges related to infectious disease modeling and simulation. The book is also a useful textbook and/or supplement for upper-undergraduate and graduate-level courses in bioinformatics, biostatistics, public health and policy, and epidemiology.

Mathematical Tools for Understanding Infectious Disease Dynamics

Mathematical Tools for Understanding Infectious Disease Dynamics
Author: Odo Diekmann
Publisher: Princeton University Press
Total Pages: 517
Release: 2012-11-18
Genre: Science
ISBN: 1400845629

Mathematical modeling is critical to our understanding of how infectious diseases spread at the individual and population levels. This book gives readers the necessary skills to correctly formulate and analyze mathematical models in infectious disease epidemiology, and is the first treatment of the subject to integrate deterministic and stochastic models and methods. Mathematical Tools for Understanding Infectious Disease Dynamics fully explains how to translate biological assumptions into mathematics to construct useful and consistent models, and how to use the biological interpretation and mathematical reasoning to analyze these models. It shows how to relate models to data through statistical inference, and how to gain important insights into infectious disease dynamics by translating mathematical results back to biology. This comprehensive and accessible book also features numerous detailed exercises throughout; full elaborations to all exercises are provided. Covers the latest research in mathematical modeling of infectious disease epidemiology Integrates deterministic and stochastic approaches Teaches skills in model construction, analysis, inference, and interpretation Features numerous exercises and their detailed elaborations Motivated by real-world applications throughout

Handbook on Entropy, Complexity and Spatial Dynamics

Handbook on Entropy, Complexity and Spatial Dynamics
Author: Reggiani, Aura
Publisher: Edward Elgar Publishing
Total Pages: 640
Release: 2021-12-14
Genre: Social Science
ISBN: 1839100591

This ground-breaking Handbook presents a state-of-the-art exploration of entropy, complexity and spatial dynamics from fundamental theoretical, empirical and methodological perspectives. It considers how foundational theories can contribute to new advances, including novel modeling and empirical insights at different sectoral, spatial and temporal scales.

Mathematical Models in Epidemiology

Mathematical Models in Epidemiology
Author: Fred Brauer
Publisher: Springer Nature
Total Pages: 628
Release: 2019-10-10
Genre: Mathematics
ISBN: 1493998285

The book is a comprehensive, self-contained introduction to the mathematical modeling and analysis of disease transmission models. It includes (i) an introduction to the main concepts of compartmental models including models with heterogeneous mixing of individuals and models for vector-transmitted diseases, (ii) a detailed analysis of models for important specific diseases, including tuberculosis, HIV/AIDS, influenza, Ebola virus disease, malaria, dengue fever and the Zika virus, (iii) an introduction to more advanced mathematical topics, including age structure, spatial structure, and mobility, and (iv) some challenges and opportunities for the future. There are exercises of varying degrees of difficulty, and projects leading to new research directions. For the benefit of public health professionals whose contact with mathematics may not be recent, there is an appendix covering the necessary mathematical background. There are indications which sections require a strong mathematical background so that the book can be useful for both mathematical modelers and public health professionals.

Modeling Infectious Diseases in Humans and Animals

Modeling Infectious Diseases in Humans and Animals
Author: Matt J. Keeling
Publisher: Princeton University Press
Total Pages: 385
Release: 2011-09-19
Genre: Science
ISBN: 1400841038

For epidemiologists, evolutionary biologists, and health-care professionals, real-time and predictive modeling of infectious disease is of growing importance. This book provides a timely and comprehensive introduction to the modeling of infectious diseases in humans and animals, focusing on recent developments as well as more traditional approaches. Matt Keeling and Pejman Rohani move from modeling with simple differential equations to more recent, complex models, where spatial structure, seasonal "forcing," or stochasticity influence the dynamics, and where computer simulation needs to be used to generate theory. In each of the eight chapters, they deal with a specific modeling approach or set of techniques designed to capture a particular biological factor. They illustrate the methodology used with examples from recent research literature on human and infectious disease modeling, showing how such techniques can be used in practice. Diseases considered include BSE, foot-and-mouth, HIV, measles, rubella, smallpox, and West Nile virus, among others. Particular attention is given throughout the book to the development of practical models, useful both as predictive tools and as a means to understand fundamental epidemiological processes. To emphasize this approach, the last chapter is dedicated to modeling and understanding the control of diseases through vaccination, quarantine, or culling. Comprehensive, practical introduction to infectious disease modeling Builds from simple to complex predictive models Models and methodology fully supported by examples drawn from research literature Practical models aid students' understanding of fundamental epidemiological processes For many of the models presented, the authors provide accompanying programs written in Java, C, Fortran, and MATLAB In-depth treatment of role of modeling in understanding disease control

Epidemics

Epidemics
Author: Ottar N. Bjørnstad
Publisher: Springer
Total Pages: 318
Release: 2018-10-30
Genre: Medical
ISBN: 3319974874

This book is designed to be a practical study in infectious disease dynamics. The book offers an easy to follow implementation and analysis of mathematical epidemiology. The book focuses on recent case studies in order to explore various conceptual, mathematical, and statistical issues. The dynamics of infectious diseases shows a wide diversity of pattern. Some have locally persistent chains-of-transmission, others persist spatially in ‘consumer-resource metapopulations’. Some infections are prevalent among the young, some among the old and some are age-invariant. Temporally, some diseases have little variation in prevalence, some have predictable seasonal shifts and others exhibit violent epidemics that may be regular or irregular in their timing. Models and ‘models-with-data’ have proved invaluable for understanding and predicting this diversity, and thence help improve intervention and control. Using mathematical models to understand infectious disease dynamics has a very rich history in epidemiology. The field has seen broad expansions of theories as well as a surge in real-life application of mathematics to dynamics and control of infectious disease. The chapters of Epidemics: Models and Data using R have been organized in a reasonably logical way: Chapters 1-10 is a mix and match of models, data and statistics pertaining to local disease dynamics; Chapters 11-13 pertains to spatial and spatiotemporal dynamics; Chapter 14 highlights similarities between the dynamics of infectious disease and parasitoid-host dynamics; Finally, Chapters 15 and 16 overview additional statistical methodology useful in studies of infectious disease dynamics. This book can be used as a guide for working with data, models and ‘models-and-data’ to understand epidemics and infectious disease dynamics in space and time.