Essential Mathematics For Games And Interactive Applications
Download Essential Mathematics For Games And Interactive Applications full books in PDF, epub, and Kindle. Read online free Essential Mathematics For Games And Interactive Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : James M. Van Verth |
Publisher | : CRC Press |
Total Pages | : 706 |
Release | : 2008-05-19 |
Genre | : Art |
ISBN | : 0123742978 |
Essential Mathematics for Games and Interactive Applications, 2nd edition presents the core mathematics necessary for sophisticated 3D graphics and interactive physical simulations. The book begins with linear algebra and matrix multiplication and expands on this foundation to cover such topics as color and lighting, interpolation, animation and basic game physics. Essential Mathematics focuses on the issues of 3D game development important to programmers and includes optimization guidance throughout. The new edition Windows code will now use Visual Studio.NET. There will also be DirectX support provided, along with OpenGL - due to its cross-platform nature. Programmers will find more concrete examples included in this edition, as well as additional information on tuning, optimization and robustness. The book has a companion CD-ROM with exercises and a test bank for the academic secondary market, and for main market: code examples built around a shared code base, including a math library covering all the topics presented in the book, a core vector/matrix math engine, and libraries to support basic 3D rendering and interaction.
Author | : Teresa Bradley |
Publisher | : John Wiley & Sons |
Total Pages | : 693 |
Release | : 2013-05-06 |
Genre | : Business & Economics |
ISBN | : 1118358295 |
Essential Mathematics for Economics and Business is established as one of the leading introductory textbooks on mathematics for students of business and economics. Combining a user–friendly approach to mathematics with practical applications to the subjects, the text provides students with a clear and comprehensible guide to mathematics. The fundamental mathematical concepts are explained in a simple and accessible style, using a wide selection of worked examples, progress exercises and real–world applications. New to this Edition Fully updated text with revised worked examples and updated material on Excel and Powerpoint New exercises in mathematics and its applications to give further clarity and practice opportunities Fully updated online material including animations and a new test bank The fourth edition is supported by a companion website at www.wiley.com/college/bradley, which contains: Animations of selected worked examples providing students with a new way of understanding the problems Access to the Maple T.A. test bank, which features over 500 algorithmic questions Further learning material, applications, exercises and solutions. Problems in context studies, which present the mathematics in a business or economics framework. Updated PowerPoint slides, Excel problems and solutions. "The text is aimed at providing an introductory-level exposition of mathematical methods for economics and business students. In terms of level, pace, complexity of examples and user-friendly style the text is excellent - it genuinely recognises and meets the needs of students with minimal maths background." —Colin Glass, Emeritus Professor, University of Ulster "One of the major strengths of this book is the range of exercises in both drill and applications. Also the 'worked examples' are excellent; they provide examples of the use of mathematics to realistic problems and are easy to follow." —Donal Hurley, formerly of University College Cork "The most comprehensive reader in this topic yet, this book is an essential aid to the avid economist who loathes mathematics!" —Amazon.co.uk
Author | : Kelvin Sung |
Publisher | : Apress |
Total Pages | : 414 |
Release | : 2019-12-05 |
Genre | : Computers |
ISBN | : 1484254430 |
Use Unity-based examples to understand fundamental mathematical concepts and see how they are applied when building modern video game functionality. You will gain the theoretical foundation you need, and you will know how to examine and modify an implementation. This book covers points in a 3D Cartesian coordinate system, and then discusses vectors and the details of dot and cross products. Basic mathematical foundations are illustrated through Unity-based example implementations. Also provided are examples showing how the concepts are applied when implementing video game functionality, such as collision support, motion simulations, autonomous behaviors, shadow approximations, and reflection off arbitrary walls. Throughout this book, you learn and examine the concepts and their applications in a game engine. What You Will Learn Understand the basic concepts of points and vectors and their applications in game developmentApply mathematical concepts to modern video game functionality, such as spherical and box collidersImplement autonomous behaviors, including following way points, facing a target, chasing an object, etc. Who This Book is For Beginners, and those interested in the implementation of interactive games, who need a basic mathematical background or a refresher with modern examples
Author | : Paul Orland |
Publisher | : Manning Publications |
Total Pages | : 686 |
Release | : 2021-01-12 |
Genre | : Computers |
ISBN | : 1617295353 |
In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. Summary To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest programming fields. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code! About the book In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. What's inside Vector geometry for computer graphics Matrices and linear transformations Core concepts from calculus Simulation and optimization Image and audio processing Machine learning algorithms for regression and classification About the reader For programmers with basic skills in algebra. About the author Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land. Table of Contents 1 Learning math with code PART I - VECTORS AND GRAPHICS 2 Drawing with 2D vectors 3 Ascending to the 3D world 4 Transforming vectors and graphics 5 Computing transformations with matrices 6 Generalizing to higher dimensions 7 Solving systems of linear equations PART 2 - CALCULUS AND PHYSICAL SIMULATION 8 Understanding rates of change 9 Simulating moving objects 10 Working with symbolic expressions 11 Simulating force fields 12 Optimizing a physical system 13 Analyzing sound waves with a Fourier series PART 3 - MACHINE LEARNING APPLICATIONS 14 Fitting functions to data 15 Classifying data with logistic regression 16 Training neural networks
Author | : Jeremy Kun |
Publisher | : |
Total Pages | : 400 |
Release | : 2020-05-17 |
Genre | : |
ISBN | : |
A Programmer's Introduction to Mathematics uses your familiarity with ideas from programming and software to teach mathematics. You'll learn about the central objects and theorems of mathematics, including graphs, calculus, linear algebra, eigenvalues, optimization, and more. You'll also be immersed in the often unspoken cultural attitudes of mathematics, learning both how to read and write proofs while understanding why mathematics is the way it is. Between each technical chapter is an essay describing a different aspect of mathematical culture, and discussions of the insights and meta-insights that constitute mathematical intuition. As you learn, we'll use new mathematical ideas to create wondrous programs, from cryptographic schemes to neural networks to hyperbolic tessellations. Each chapter also contains a set of exercises that have you actively explore mathematical topics on your own. In short, this book will teach you to engage with mathematics. A Programmer's Introduction to Mathematics is written by Jeremy Kun, who has been writing about math and programming for 10 years on his blog "Math Intersect Programming." As of 2020, he works in datacenter optimization at Google.The second edition includes revisions to most chapters, some reorganized content and rewritten proofs, and the addition of three appendices.
Author | : Michael Haese |
Publisher | : |
Total Pages | : 0 |
Release | : 2013 |
Genre | : Mathematics |
ISBN | : |
Author | : Avi Wigderson |
Publisher | : Princeton University Press |
Total Pages | : 434 |
Release | : 2019-10-29 |
Genre | : Computers |
ISBN | : 0691189137 |
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Author | : Philip Schneider |
Publisher | : Elsevier |
Total Pages | : 1053 |
Release | : 2002-10-10 |
Genre | : Computers |
ISBN | : 0080478026 |
Do you spend too much time creating the building blocks of your graphics applications or finding and correcting errors? Geometric Tools for Computer Graphics is an extensive, conveniently organized collection of proven solutions to fundamental problems that you'd rather not solve over and over again, including building primitives, distance calculation, approximation, containment, decomposition, intersection determination, separation, and more. If you have a mathematics degree, this book will save you time and trouble. If you don't, it will help you achieve things you may feel are out of your reach. Inside, each problem is clearly stated and diagrammed, and the fully detailed solutions are presented in easy-to-understand pseudocode. You also get the mathematics and geometry background needed to make optimal use of the solutions, as well as an abundance of reference material contained in a series of appendices. Features - Filled with robust, thoroughly tested solutions that will save you time and help you avoid costly errors. - Covers problems relevant for both 2D and 3D graphics programming. - Presents each problem and solution in stand-alone form allowing you the option of reading only those entries that matter to you. - Provides the math and geometry background you need to understand the solutions and put them to work. - Clearly diagrams each problem and presents solutions in easy-to-understand pseudocode. - Resources associated with the book are available at the companion Web site www.mkp.com/gtcg.* Filled with robust, thoroughly tested solutions that will save you time and help you avoid costly errors.* Covers problems relevant for both 2D and 3D graphics programming.* Presents each problem and solution in stand-alone form allowing you the option of reading only those entries that matter to you.* Provides the math and geometry background you need to understand the solutions and put them to work.* Clearly diagrams each problem and presents solutions in easy-to-understand pseudocode.* Resources associated with the book are available at the companion Web site www.mkp.com/gtcg.
Author | : Abraham Neyman |
Publisher | : Springer Science & Business Media |
Total Pages | : 466 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 9401001898 |
This volume is based on lectures given at the NATO Advanced Study Institute on "Stochastic Games and Applications," which took place at Stony Brook, NY, USA, July 1999. It gives the editors great pleasure to present it on the occasion of L.S. Shapley's eightieth birthday, and on the fiftieth "birthday" of his seminal paper "Stochastic Games," with which this volume opens. We wish to thank NATO for the grant that made the Institute and this volume possible, and the Center for Game Theory in Economics of the State University of New York at Stony Brook for hosting this event. We also wish to thank the Hebrew University of Jerusalem, Israel, for providing continuing financial support, without which this project would never have been completed. In particular, we are grateful to our editorial assistant Mike Borns, whose work has been indispensable. We also would like to acknowledge the support of the Ecole Poly tech nique, Paris, and the Israel Science Foundation. March 2003 Abraham Neyman and Sylvain Sorin ix STOCHASTIC GAMES L.S. SHAPLEY University of California at Los Angeles Los Angeles, USA 1. Introduction In a stochastic game the play proceeds by steps from position to position, according to transition probabilities controlled jointly by the two players.
Author | : Wendy Stahler |
Publisher | : New Riders |
Total Pages | : 508 |
Release | : 2004 |
Genre | : Computers |
ISBN | : 9780735713901 |
Whether one is a hobbyist or a budding game design pro, the objective is probably the same: to create the coolest games possible using today's increasingly sophisticated technology. Through clear, step-by-step instructions, author Wendy Stahler covers the trigonometry snippets, vector operations, and 1D/2D/3D motion designers need to improve their level of game development.