Advances In Algebraic Geometry Codes

Advances In Algebraic Geometry Codes
Author: Edgar Martinez-moro
Publisher: World Scientific
Total Pages: 453
Release: 2008-10-08
Genre: Mathematics
ISBN: 9814471615

Advances in Algebraic Geometry Codes presents the most successful applications of algebraic geometry to the field of error-correcting codes, which are used in the industry when one sends information through a noisy channel. The noise in a channel is the corruption of a part of the information due to either interferences in the telecommunications or degradation of the information-storing support (for instance, compact disc). An error-correcting code thus adds extra information to the message to be transmitted with the aim of recovering the sent information. With contributions from renowned researchers, this pioneering book will be of value to mathematicians, computer scientists, and engineers in information theory.

List Decoding of Error-Correcting Codes

List Decoding of Error-Correcting Codes
Author: Venkatesan Guruswami
Publisher: Springer
Total Pages: 354
Release: 2004-11-29
Genre: Computers
ISBN: 3540301801

How can one exchange information e?ectively when the medium of com- nication introduces errors? This question has been investigated extensively starting with the seminal works of Shannon (1948) and Hamming (1950), and has led to the rich theory of “error-correcting codes”. This theory has traditionally gone hand in hand with the algorithmic theory of “decoding” that tackles the problem of recovering from the errors e?ciently. This thesis presents some spectacular new results in the area of decoding algorithms for error-correctingcodes. Speci?cally,itshowshowthenotionof“list-decoding” can be applied to recover from far more errors, for a wide variety of err- correcting codes, than achievable before. A brief bit of background: error-correcting codes are combinatorial str- tures that show how to represent (or “encode”) information so that it is - silient to a moderate number of errors. Speci?cally, an error-correcting code takes a short binary string, called the message, and shows how to transform it into a longer binary string, called the codeword, so that if a small number of bits of the codewordare ?ipped, the resulting string does not look like any other codeword. The maximum number of errorsthat the code is guaranteed to detect, denoted d, is a central parameter in its design. A basic property of such a code is that if the number of errors that occur is known to be smaller than d/2, the message is determined uniquely. This poses a computational problem,calledthedecodingproblem:computethemessagefromacorrupted codeword, when the number of errors is less than d/2.

Applied Algebra, Algebraic Algorithms and Error-Correcting Codes

Applied Algebra, Algebraic Algorithms and Error-Correcting Codes
Author: Marc Fossorier
Publisher: Springer
Total Pages: 516
Release: 2003-07-31
Genre: Computers
ISBN: 3540467963

This book constitutes the refereed proceedings of the 19th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC-13, held in Honolulu, Hawaii, USA in November 1999. The 42 revised full papers presented together with six invited survey papers were carefully reviewed and selected from a total of 86 submissions. The papers are organized in sections on codes and iterative decoding, arithmetic, graphs and matrices, block codes, rings and fields, decoding methods, code construction, algebraic curves, cryptography, codes and decoding, convolutional codes, designs, decoding of block codes, modulation and codes, Gröbner bases and AG codes, and polynomials.

Error-Correction Coding and Decoding

Error-Correction Coding and Decoding
Author: Martin Tomlinson
Publisher: Springer
Total Pages: 527
Release: 2017-02-21
Genre: Technology & Engineering
ISBN: 3319511033

This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of th ese codes. Part IV deals with decoders designed to realize optimum performance. Part V describes applications which include combined error correction and detection, public key cryptography using Goppa codes, correcting errors in passwords and watermarking. This book is a valuable resource for anyone interested in error-correcting codes and their applications, ranging from non-experts to professionals at the forefront of research in their field. This book is open access under a CC BY 4.0 license.

Applied Algebra, Algebraic Algorithms and Error-Correcting Codes

Applied Algebra, Algebraic Algorithms and Error-Correcting Codes
Author: Gérard Cohen
Publisher: Springer Science & Business Media
Total Pages: 376
Release: 1993-04-20
Genre: Computers
ISBN: 9783540566861

Researchers may find themselves confronted with proteases, either because they play an essential role in a particular process they are studying, or because they interfere with that process. In either case they may need to investigate or inhibit the proteolytic activity. Others may wish to use proteolytic enzymes as laboratory tools. This book has been written with these investigators in mind and includes assay methods using natural and artificial substrates, genetic-based assays, and strategies for the inhibition, purification and crystallization of proteases. In selected chapters the use of proteolytic enzymes to analyze proteins, segregate cells or in peptide synthesis is covered.

Algebraic-Geometric Codes

Algebraic-Geometric Codes
Author: M. Tsfasman
Publisher: Springer Science & Business Media
Total Pages: 671
Release: 2013-12-01
Genre: Mathematics
ISBN: 9401138109

'Et moi ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d' etre of this series.

Algebraic Geometry Codes: Advanced Chapters

Algebraic Geometry Codes: Advanced Chapters
Author: Michael Tsfasman
Publisher: American Mathematical Soc.
Total Pages: 466
Release: 2019-07-02
Genre: Computers
ISBN: 1470448653

Algebraic Geometry Codes: Advanced Chapters is devoted to the theory of algebraic geometry codes, a subject related to local_libraryBook Catalogseveral domains of mathematics. On one hand, it involves such classical areas as algebraic geometry and number theory; on the other, it is connected to information transmission theory, combinatorics, finite geometries, dense packings, and so on. The book gives a unique perspective on the subject. Whereas most books on coding theory start with elementary concepts and then develop them in the framework of coding theory itself within, this book systematically presents meaningful and important connections of coding theory with algebraic geometry and number theory. Among many topics treated in the book, the following should be mentioned: curves with many points over finite fields, class field theory, asymptotic theory of global fields, decoding, sphere packing, codes from multi-dimensional varieties, and applications of algebraic geometry codes. The book is the natural continuation of Algebraic Geometric Codes: Basic Notions by the same authors. The concise exposition of the first volume is included as an appendix.

Error-Correcting Linear Codes

Error-Correcting Linear Codes
Author: Anton Betten
Publisher: Springer Science & Business Media
Total Pages: 819
Release: 2006-09-21
Genre: Mathematics
ISBN: 3540317031

This text offers an introduction to error-correcting linear codes for researchers and graduate students in mathematics, computer science and engineering. The book differs from other standard texts in its emphasis on the classification of codes by means of isometry classes. The relevant algebraic are developed rigorously. Cyclic codes are discussed in great detail. In the last four chapters these isometry classes are enumerated, and representatives are constructed algorithmically.

Applied Algebra, Algebraic Algorithms and Error-Correcting Codes

Applied Algebra, Algebraic Algorithms and Error-Correcting Codes
Author: Maria Bras-Amorós
Publisher: Springer Science & Business Media
Total Pages: 253
Release: 2009-05-25
Genre: Computers
ISBN: 3642021808

This book constitutes the refereed proceedings of the 18th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC-18, held in Tarragona, Spain, in June 2009. The 22 revised full papers presented together with 7 extended absstracts were carefully reviewed and selected from 50 submissions. Among the subjects addressed are block codes, including list-decoding algorithms; algebra and codes: rings, fields, algebraic geometry codes; algebra: rings and fields, polynomials, permutations, lattices; cryptography: cryptanalysis and complexity; computational algebra: algebraic algorithms and transforms; sequences and boolean functions.

A Course in Algebraic Error-Correcting Codes

A Course in Algebraic Error-Correcting Codes
Author: Simeon Ball
Publisher: Springer Nature
Total Pages: 185
Release: 2020-05-08
Genre: Mathematics
ISBN: 3030411532

This textbook provides a rigorous mathematical perspective on error-correcting codes, starting with the basics and progressing through to the state-of-the-art. Algebraic, combinatorial, and geometric approaches to coding theory are adopted with the aim of highlighting how coding can have an important real-world impact. Because it carefully balances both theory and applications, this book will be an indispensable resource for readers seeking a timely treatment of error-correcting codes. Early chapters cover fundamental concepts, introducing Shannon’s theorem, asymptotically good codes and linear codes. The book then goes on to cover other types of codes including chapters on cyclic codes, maximum distance separable codes, LDPC codes, p-adic codes, amongst others. Those undertaking independent study will appreciate the helpful exercises with selected solutions. A Course in Algebraic Error-Correcting Codes suits an interdisciplinary audience at the Masters level, including students of mathematics, engineering, physics, and computer science. Advanced undergraduates will find this a useful resource as well. An understanding of linear algebra is assumed.