Equivalents Of The Riemann Hypothesis Volume 1 Arithmetic Equivalents
Download Equivalents Of The Riemann Hypothesis Volume 1 Arithmetic Equivalents full books in PDF, epub, and Kindle. Read online free Equivalents Of The Riemann Hypothesis Volume 1 Arithmetic Equivalents ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Kevin Broughan |
Publisher | : Cambridge University Press |
Total Pages | : 349 |
Release | : 2017-11-02 |
Genre | : Mathematics |
ISBN | : 1108187005 |
The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. It also includes extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs.
Author | : Kevin Broughan |
Publisher | : Cambridge University Press |
Total Pages | : 350 |
Release | : 2017-11-02 |
Genre | : Mathematics |
ISBN | : 1108195415 |
The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. It also includes extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs.
Author | : Kevin Broughan |
Publisher | : Cambridge University Press |
Total Pages | : 349 |
Release | : 2017-11-02 |
Genre | : Mathematics |
ISBN | : 110719704X |
This first volume of two presents classical and modern arithmetic equivalents to the Riemann hypothesis. Accompanying software is online.
Author | : Kevin Broughan |
Publisher | : Cambridge University Press |
Total Pages | : 706 |
Release | : 2023-09-30 |
Genre | : Mathematics |
ISBN | : 1009384775 |
This three-volume work presents the main known equivalents to the Riemann hypothesis, perhaps the most important problem in mathematics. Volume 3 covers new arithmetic and analytic equivalences from numerous studies in the field, such as Rogers and Tao, and presents derivations which show whether the Riemann hypothesis is decidable.
Author | : Kevin Broughan |
Publisher | : Cambridge University Press |
Total Pages | : 514 |
Release | : 2017-11-02 |
Genre | : Mathematics |
ISBN | : 1108195431 |
The Riemann hypothesis (RH) is perhaps the most important outstanding problem in mathematics. This two-volume text presents the main known equivalents to RH using analytic and computational methods. The book is gentle on the reader with definitions repeated, proofs split into logical sections, and graphical descriptions of the relations between different results. It also includes extensive tables, supplementary computational tools, and open problems suitable for research. Accompanying software is free to download. These books will interest mathematicians who wish to update their knowledge, graduate and senior undergraduate students seeking accessible research problems in number theory, and others who want to explore and extend results computationally. Each volume can be read independently. Volume 1 presents classical and modern arithmetic equivalents to RH, with some analytic methods. Volume 2 covers equivalences with a strong analytic orientation, supported by an extensive set of appendices containing fully developed proofs.
Author | : Kevin Broughan |
Publisher | : Cambridge University Press |
Total Pages | : 705 |
Release | : 2023-09-30 |
Genre | : Mathematics |
ISBN | : 1009384805 |
This third volume presents further equivalents to the Riemann hypothesis and explores its decidability.
Author | : Peter B. Borwein |
Publisher | : Springer Science & Business Media |
Total Pages | : 543 |
Release | : 2008 |
Genre | : Mathematics |
ISBN | : 0387721258 |
The Riemann Hypothesis has become the Holy Grail of mathematics in the century and a half since 1859 when Bernhard Riemann, one of the extraordinary mathematical talents of the 19th century, originally posed the problem. While the problem is notoriously difficult, and complicated even to state carefully, it can be loosely formulated as "the number of integers with an even number of prime factors is the same as the number of integers with an odd number of prime factors." The Hypothesis makes a very precise connection between two seemingly unrelated mathematical objects, namely prime numbers and the zeros of analytic functions. If solved, it would give us profound insight into number theory and, in particular, the nature of prime numbers. This book is an introduction to the theory surrounding the Riemann Hypothesis. Part I serves as a compendium of known results and as a primer for the material presented in the 20 original papers contained in Part II. The original papers place the material into historical context and illustrate the motivations for research on and around the Riemann Hypothesis. Several of these papers focus on computation of the zeta function, while others give proofs of the Prime Number Theorem, since the Prime Number Theorem is so closely connected to the Riemann Hypothesis. The text is suitable for a graduate course or seminar or simply as a reference for anyone interested in this extraordinary conjecture.
Author | : Barry Mazur |
Publisher | : Cambridge University Press |
Total Pages | : 155 |
Release | : 2016-04-11 |
Genre | : Mathematics |
ISBN | : 1107101921 |
This book introduces prime numbers and explains the famous unsolved Riemann hypothesis.
Author | : Stephen D. Casey |
Publisher | : Springer Nature |
Total Pages | : 580 |
Release | : 2024-01-04 |
Genre | : Mathematics |
ISBN | : 3031411307 |
During his long and distinguished career, J. Rowland Higgins (1935-2020) made a substantial impact on many mathematical fields through his work on sampling theory, his deep knowledge of its history, and his service to the community. This volume is a tribute to his work and legacy, featuring chapters written by distinguished mathematicians that explore cutting-edge research in sampling, approximation, signal analysis, and other related areas. An introductory chapter provides a biography of Higgins that explores his rich and unique life, along with a bibliography of his papers; a brief history of the SampTA meetings – of which he was a Founding Member – is also included. The remaining articles are grouped into four sections – classical sampling, theoretical extensions, frame theory, and applications of sampling theory – and explore Higgins’ contributions to these areas, as well as some of the latest developments.
Author | : Dimitrios Poulakis |
Publisher | : Springer Nature |
Total Pages | : 233 |
Release | : 2022-10-17 |
Genre | : Computers |
ISBN | : 3031196856 |
This book constitutes the proceedings of the 9th International Conference on Algebraic Informatics, CAI 2022, held as virtual event, in October 27–29, 2022. The 2 abstracts, 3 full papers of invited speakers, and 12 contributed papers presented in this volume were carefully reviewed and selected from 17 submissions. The papers contain original and unpublished research; the topics of them lie in automata theory, cryptography, coding theory, DNA computation, computer algebra, and theory of software architectures.