Equations of the Mixed Type

Equations of the Mixed Type
Author: A. V. Bitsadze
Publisher: Elsevier
Total Pages: 177
Release: 2014-05-16
Genre: Mathematics
ISBN: 1483164861

Equations of the Mixed Type compiles a series of lectures on certain fundamental questions in the theory of equations of mixed type. This book investigates the series of problems concerning linear partial differential equations of the second order in two variables, and possessing the property that the type of the equation changes either on the boundary of or inside the considered domain. Topics covered include general remarks on linear partial differential equations of mixed type; study of the solutions of second order hyperbolic equations with initial conditions given along the lines of parabolicity; and study of the solutions of second order elliptic equations for a domain, the boundary of which includes a segment of the curve of parabolic degeneracy. The problem of Tricomi and other mixed problems are also deliberated in this text. This publication is a good reference for students and researchers conducting work on the theory of equations of mixed type.

Equations of Mixed Type

Equations of Mixed Type
Author: Modest Mikha_lovich Smirnov
Publisher: American Mathematical Soc.
Total Pages: 244
Release: 1978-12-31
Genre: Mathematics
ISBN: 9780821886724

Lecture Notes on Mixed Type Partial Differential Equations

Lecture Notes on Mixed Type Partial Differential Equations
Author: John Michael Rassias
Publisher: World Scientific
Total Pages: 160
Release: 1990
Genre: Mathematics
ISBN: 9789810204068

This book discusses various parts of the theory of mixed type partial differential equations with boundary conditions such as: Chaplygin's classical dynamical equation of mixed type, the theory of regularity of solutions in the sense of Tricomi, Tricomi's fundamental idea and one-dimensional singular integral equations on non-Carleman type, Gellerstedt's characteristic problem and Frankl's non-characteristic problem, Bitsadze and Lavrentjev's mixed type boundary value problems, quasi-regularity of solutions in the classical sense. Some of the latest results of the author are also presented in this book.

Mixed Type Partial Differential Equations, Lecture Notes On

Mixed Type Partial Differential Equations, Lecture Notes On
Author: Rassias John Michael
Publisher: World Scientific Publishing Company
Total Pages: 152
Release: 1990-08-30
Genre: Mathematics
ISBN: 9813103647

This book discusses various parts of the theory of mixed type partial differential equations with boundary conditions such as: Chaplygin's classical dynamical equation of mixed type, the theory of regularity of solutions in the sense of Tricomi, Tricomi's fundamental idea and one-dimensional singular integral equations on non-Carleman type, Gellerstedt's characteristic problem and Frankl's non-characteristic problem, Bitsadze and Lavrentjev's mixed type boundary value problems, quasi-regularity of solutions in the classical sense. Some of the latest results of the author are also presented in this book.

Linear and Quasilinear Complex Equations of Hyperbolic and Mixed Types

Linear and Quasilinear Complex Equations of Hyperbolic and Mixed Types
Author: Guo Chun Wen
Publisher: CRC Press
Total Pages: 272
Release: 2002-08-22
Genre: Mathematics
ISBN: 0203166582

This volume deals with first and second order complex equations of hyperbolic and mixed types. Various general boundary value problems for linear and quasilinear complex equations are investigated in detail. To obtain results for complex equations of mixed types, some discontinuous boundary value problems for elliptic complex equations are discusse

A Practical Course in Differential Equations and Mathematical Modelling

A Practical Course in Differential Equations and Mathematical Modelling
Author: Nail H. Ibragimov
Publisher: World Scientific
Total Pages: 365
Release: 2009
Genre: Mathematics
ISBN: 9814291951

A Practical Course in Differential Equations and Mathematical Modelling is a unique blend of the traditional methods of ordinary and partial differential equations with Lie group analysis enriched by the author?s own theoretical developments. The book ? which aims to present new mathematical curricula based on symmetry and invariance principles ? is tailored to develop analytic skills and ?working knowledge? in both classical and Lie?s methods for solving linear and nonlinear equations. This approach helps to make courses in differential equations, mathematical modelling, distributions and fundamental solution, etc. easy to follow and interesting for students. The book is based on the author?s extensive teaching experience at Novosibirsk and Moscow universities in Russia, CollŠge de France, Georgia Tech and Stanford University in the United States, universities in South Africa, Cyprus, Turkey, and Blekinge Institute of Technology (BTH) in Sweden. The new curriculum prepares students for solving modern nonlinear problems and will essentially be more appealing to students compared to the traditional way of teaching mathematics.

Partial Differential Equations in China

Partial Differential Equations in China
Author: Chaohao Gu
Publisher: Springer Science & Business Media
Total Pages: 193
Release: 2012-12-06
Genre: Mathematics
ISBN: 9401111987

In the past few years there has been a fruitful exchange of expertise on the subject of partial differential equations (PDEs) between mathematicians from the People's Republic of China and the rest of the world. The goal of this collection of papers is to summarize and introduce the historical progress of the development of PDEs in China from the 1950s to the 1980s. The results presented here were mainly published before the 1980s, but, having been printed in the Chinese language, have not reached the wider audience they deserve. Topics covered include, among others, nonlinear hyperbolic equations, nonlinear elliptic equations, nonlinear parabolic equations, mixed equations, free boundary problems, minimal surfaces in Riemannian manifolds, microlocal analysis and solitons. For mathematicians and physicists interested in the historical development of PDEs in the People's Republic of China.

The Dirichlet Problem for Elliptic-Hyperbolic Equations of Keldysh Type

The Dirichlet Problem for Elliptic-Hyperbolic Equations of Keldysh Type
Author: Thomas H. Otway
Publisher: Springer Science & Business Media
Total Pages: 219
Release: 2012-01-07
Genre: Mathematics
ISBN: 3642244149

Partial differential equations of mixed elliptic-hyperbolic type arise in diverse areas of physics and geometry, including fluid and plasma dynamics, optics, cosmology, traffic engineering, projective geometry, geometric variational theory, and the theory of isometric embeddings. And yet even the linear theory of these equations is at a very early stage. This text examines various Dirichlet problems which can be formulated for equations of Keldysh type, one of the two main classes of linear elliptic-hyperbolic equations. Open boundary conditions (in which data are prescribed on only part of the boundary) and closed boundary conditions (in which data are prescribed on the entire boundary) are both considered. Emphasis is on the formulation of boundary conditions for which solutions can be shown to exist in an appropriate function space. Specific applications to plasma physics, optics, and analysis on projective spaces are discussed. (From the preface)