Photoelectrochemical Water Splitting

Photoelectrochemical Water Splitting
Author: Zhebo Chen
Publisher: Springer Science & Business Media
Total Pages: 130
Release: 2013-08-28
Genre: Science
ISBN: 1461482984

This book outlines many of the techniques involved in materials development and characterization for photoelectrochemical (PEC) – for example, proper metrics for describing material performance, how to assemble testing cells and prepare materials for assessment of their properties, and how to perform the experimental measurements needed to achieve reliable results towards better scientific understanding. For each technique, proper procedure, benefits, limitations, and data interpretation are discussed. Consolidating this information in a short, accessible, and easy to read reference guide will allow researchers to more rapidly immerse themselves into PEC research and also better compare their results against those of other researchers to better advance materials development. This book serves as a “how-to” guide for researchers engaged in or interested in engaging in the field of photoelectrochemical (PEC) water splitting. PEC water splitting is a rapidly growing field of research in which the goal is to develop materials which can absorb the energy from sunlight to drive electrochemical hydrogen production from the splitting of water. The substantial complexity in the scientific understanding and experimental protocols needed to sufficiently pursue accurate and reliable materials development means that a large need exists to consolidate and standardize the most common methods utilized by researchers in this field.

Photoactive Nanomaterials

Photoactive Nanomaterials
Author: Nurxat Nuraje
Publisher: MDPI
Total Pages: 170
Release: 2021-03-25
Genre: Technology & Engineering
ISBN: 3036505202

The energy transition is one of the key approaches in the effort to halt climate changes, and it has become even more essential in the light of the recent COVID-19 pandemic. Fostering the energy efficiency and the energy independence of the building sector is a focal aim to move towards a decarbonized society. In this context, building physics and building energy systems are fundamental disciplines based on applied physics applications in civil, architectural, and environmental engineering, including technical themes related to the planning of energy and the environment, diagnostic methods, and mitigating techniques. This Special Issue contains information on experimental studies in the following research topics: renewable energy sources, building energy analysis, rational use of energy, heat transmission, heating and cooling systems, thermofluid dynamics, smart energy systems, and energy service management in buildings.

Photoelectrochemical Hydrogen Production

Photoelectrochemical Hydrogen Production
Author: Roel van de Krol
Publisher: Springer Science & Business Media
Total Pages: 322
Release: 2011-11-09
Genre: Technology & Engineering
ISBN: 146141380X

Photoelectrochemical Hydrogen Production describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materials and devices, and combinatorial approaches towards the development of new materials. Finally, the economic and business perspectives of PEC devices are discussed, and promising future directions indicated. Photoelectrochemical Hydrogen Production is a one-stop resource for scientists, students and R&D practitioners starting in this field, providing both the theoretical background as well as useful practical information on photoelectrochemical measurement techniques. Experts in the field benefit from the chapters on current state-of-the-art materials/devices and future directions.

Sustainable Energy Systems and Applications

Sustainable Energy Systems and Applications
Author: Ibrahim Dincer
Publisher: Springer Science & Business Media
Total Pages: 823
Release: 2011-11-05
Genre: Science
ISBN: 0387958606

The concept of sustainable development was first introduced by the Brundtland Commission almost 20 years ago and has received increased attention during the past decade. It is now an essential part of any energy activities. This is a research-based textbook which can be used by senior undergraduate students, graduate students, engineers, practitioners, scientists, researchers in the area of sustainable energy systems and aimed to address some key pillars: better efficiency, better cost effectiveness, better use of energy resources, better environment, better energy security, and better sustainable development. It also includes some cutting-edge topics, such hydrogen and fuel cells, renewable, clean combustion technologies, CO2 abatement technologies, and some potential tools (exergy, constructal theory, etc.) for design, analysis and performance improvement.

Modern Electrochemical Methods in Nano, Surface and Corrosion Science

Modern Electrochemical Methods in Nano, Surface and Corrosion Science
Author: Mahmood Aliofkhazraei
Publisher: BoD – Books on Demand
Total Pages: 354
Release: 2014-06-11
Genre: Science
ISBN: 9535115863

The basics and principles of new electrochemical methods and also their usage for fabrication and analysis of different nanostructures were discussed in this book. These methods consist of electrochemical methods in nanoscale (e.g. electrochemical atomic force microscopy and electrochemical scanning tunneling microscopy) and also electrochemical methods for fabrication of nanomaterials.

Chemically Deposited Nanocrystalline Metal Oxide Thin Films

Chemically Deposited Nanocrystalline Metal Oxide Thin Films
Author: Fabian I. Ezema
Publisher: Springer Nature
Total Pages: 926
Release: 2021-06-26
Genre: Technology & Engineering
ISBN: 3030684628

This book guides beginners in the areas of thin film preparation, characterization, and device making, while providing insight into these areas for experts. As chemically deposited metal oxides are currently gaining attention in development of devices such as solar cells, supercapacitors, batteries, sensors, etc., the book illustrates how the chemical deposition route is emerging as a relatively inexpensive, simple, and convenient solution for large area deposition. The advancement in the nanostructured materials for the development of devices is fully discussed.

Semiconductor Photocatalysis

Semiconductor Photocatalysis
Author: Horst Kisch
Publisher: John Wiley & Sons
Total Pages: 264
Release: 2015-04-20
Genre: Science
ISBN: 3527335536

Focusing on the basic principles of semiconductor photocatalysis, this book also gives a brief introduction to photochemistry, photoelectrochemistry, and homogeneous photocatalysis. In addition, the author - one of the leading authorities in the field - presents important environmental and practical aspects. A valuable, one-stop source for all chemists, material scientists, and physicists working in this area, as well as novice researchers entering semiconductor photocatalysis.

Green Photocatalytic Semiconductors

Green Photocatalytic Semiconductors
Author: Seema Garg
Publisher: Springer Nature
Total Pages: 855
Release: 2021-09-20
Genre: Science
ISBN: 303077371X

This book comprises a detailed overview on the role of photocatalysts for environmental remediation, hydrogen production and carbon dioxide reduction. Effective ways to enhance the photocatalytic activity of the material via doping, hybrid material, laser light and nanocomposites have been discussed in this book. The book also further elaborates the role of metal nanoparticles, rare earth doping, sensitizers, surface oxygen vacancy, interface engineering and band gap engineering for enhancing the photocatalytic activity. An approach to recover the photocatalytic material via immobilization is also presented. This book brings to light much of the recent research in the development of such semiconductor photocatalytic systems. The book will thus be of relevance to researchers in the field of: material science, environmental science & technology, photocatalytic applications, newer methods of energy generation & conversion and industrial applications.

Visible-Light-Active Photocatalysis

Visible-Light-Active Photocatalysis
Author: Srabanti Ghosh
Publisher: John Wiley & Sons
Total Pages: 624
Release: 2018-06-11
Genre: Science
ISBN: 3527342931

A comprehensive and timely overview of this important and hot topic, with special emphasis placed on environmental applications and the potential for solar light harvesting. Following introductory chapters on environmental photocatalysis, water splitting, and applications in synthetic chemistry, further chapters focus on the synthesis and design of photocatalysts, solar energy conversion, and such environmental aspects as the removal of water pollutants, photocatalytic conversion of CO2. Besides metal oxide-based photocatalysts, the authors cover other relevant material classes including carbon-based nanomaterials and novel hybrid materials. Chapters on mechanistic aspects, computational modeling of photocatalysis and Challenges and perspectives of solar reactor design for industrial applications complete this unique survey of the subject. With its in-depth discussions ranging from a comprehensive understanding to the engineering of materials and applied devices, this is an invaluable resource for a range of disciplines.

Advanced Oxidation Processes for Water Treatment

Advanced Oxidation Processes for Water Treatment
Author: Mihaela I. Stefan
Publisher: IWA Publishing
Total Pages: 712
Release: 2017-09-15
Genre: Science
ISBN: 1780407181

Advanced Oxidation Processes (AOPs) rely on the efficient generation of reactive radical species and are increasingly attractive options for water remediation from a wide variety of organic micropollutants of human health and/or environmental concern. Advanced Oxidation Processes for Water Treatment covers the key advanced oxidation processes developed for chemical contaminant destruction in polluted water sources, some of which have been implemented successfully at water treatment plants around the world. The book is structured in two sections; the first part is dedicated to the most relevant AOPs, whereas the topics covered in the second section include the photochemistry of chemical contaminants in the aquatic environment, advanced water treatment for water reuse, implementation of advanced treatment processes for drinking water production at a state-of-the art water treatment plant in Europe, advanced treatment of municipal and industrial wastewater, and green technologies for water remediation. The advanced oxidation processes discussed in the book cover the following aspects: - Process principles including the most recent scientific findings and interpretation. - Classes of compounds suitable to AOP treatment and examples of reaction mechanisms. - Chemical and photochemical degradation kinetics and modelling. - Water quality impact on process performance and practical considerations on process parameter selection criteria. - Process limitations and byproduct formation and strategies to mitigate any potential adverse effects on the treated water quality. - AOP equipment design and economics considerations. - Research studies and outcomes. - Case studies relevant to process implementation to water treatment. - Commercial applications. - Future research needs. Advanced Oxidation Processes for Water Treatment presents the most recent scientific and technological achievements in process understanding and implementation, and addresses to anyone interested in water remediation, including water industry professionals, consulting engineers, regulators, academics, students. Editor: Mihaela I. Stefan - Trojan Technologies - Canada