Engineering The Atom Photon Interaction
Download Engineering The Atom Photon Interaction full books in PDF, epub, and Kindle. Read online free Engineering The Atom Photon Interaction ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Ana Predojević |
Publisher | : Springer |
Total Pages | : 410 |
Release | : 2015-07-16 |
Genre | : Science |
ISBN | : 3319192310 |
This book provides a comprehensive view of the contemporary methods for quantum-light engineering. In particular, it addresses different technological branches and therefore allows the reader to quickly identify the best technology - application match. Non-classical light is a versatile tool, proven to be an intrinsic part of various quantum technologies. Its historical significance has made it the subject of many text books written both from theoretical and experimental point of view. This book takes another perspective by giving an insight to modern technologies used to generate and manipulate quantum light.
Author | : Mitchel Weissbluth |
Publisher | : Academic Press |
Total Pages | : 422 |
Release | : 2012-12-02 |
Genre | : Science |
ISBN | : 0080926509 |
This book provides an introduction to the body of theory shared by several branches of modern optics--nonlinear optics, quantum electronics, laser physics, and quantum optics--with an emphasis on quantum and statistical aspects. It is intended for well prepared undergraduate and graduate students in physics, applied physics, electrical engineering, and chemistry who seek a level of preparation of sufficient maturity to enable them to follow the specialized literature.
Author | : Ana Predojević |
Publisher | : |
Total Pages | : |
Release | : 2015 |
Genre | : |
ISBN | : 9783319192321 |
This book provides a comprehensive view of the contemporary methods for quantum-light engineering. In particular, it addresses different technological branches and therefore allows the reader to quickly identify the best technology - application match. Non-classical light is a versatile tool, proven to be an intrinsic part of various quantum technologies. Its historical significance has made it the subject of many text books written both from theoretical and experimental point of view. This book takes another perspective by giving an insight to modern technologies used to generate and manipulate quantum light.
Author | : Claude Cohen-Tannoudji |
Publisher | : John Wiley & Sons |
Total Pages | : 691 |
Release | : 1998-03-23 |
Genre | : Science |
ISBN | : 0471293369 |
Atom-Photon Interactions: Basic Processes and Applications allows the reader to master various aspects of the physics of the interaction between light and matter. It is devoted to the study of the interactions between photons and atoms in atomic and molecular physics, quantum optics, and laser physics. The elementary processes in which photons are emitted, absorbed, scattered, or exchanged between atoms are treated in detail and described using diagrammatic representation. The book presents different theoretical approaches, including: Perturbative methods The resolvent method Use of the master equation The Langevin equation The optical Bloch equations The dressed-atom approach Each method is presented in a self-contained manner so that it may be studied independently. Many applications of these approaches to simple and important physical phenomena are given to illustrate the potential and limitations of each method.
Author | : Bo Jing |
Publisher | : Springer Nature |
Total Pages | : 197 |
Release | : 2022-03-16 |
Genre | : Science |
ISBN | : 981190328X |
This book highlights the novel research in quantum memory networking, especially quantum memories based on cold atomic ensembles. After discussing the frontiers of quantum networking research and building a DLCZ-type quantum memory with cold atomic ensemble, the author develops the ring cavity enhanced quantum memory and demonstrates a filter-free quantum memory, which significantly improves the photon-atom entanglement. The author then realizes for the first time the GHZ-type entanglement of three separate quantum memories, a building block of 2D quantum repeaters and quantum networks. The author also combines quantum memories and time-resolved measurements, and reports the first multiple interference of three single photons with different colors. The book is of good reference value for graduate students, researchers, and technical personnel in quantum information sciences.
Author | : Markus Rambach |
Publisher | : Springer |
Total Pages | : 154 |
Release | : 2018-08-28 |
Genre | : Science |
ISBN | : 3319971549 |
This book provides a step-by-step guide on how to construct a narrowband single photon source for the integration with atom-based memory systems. It combines the necessary theoretical background with crucial experimental methods and characterisations to form a complete handbook for readers at all academic levels. The future implementation of large quantum networks will require the hybridisation of photonic qubits for communication with quantum memories in the context of information storage. Such an interface requires carefully tailored single photons to ensure compatibility with the chosen memory. The source itself is remarkable for a number of reasons, including being the spectrally narrowest and brightest source of its kind; in addition, it offers a novel technique for frequency stabilisation in an optical cavity, together with exceptional portability. Starting with a thorough analysis of the current literature, this book derives the essential parameters needed to design the source, describes its individual components in detail, and closes with the characterisation of a single photon source.
Author | : Peter Michler |
Publisher | : Springer |
Total Pages | : 457 |
Release | : 2017-06-01 |
Genre | : Science |
ISBN | : 3319563785 |
This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.
Author | : Stefan Putz |
Publisher | : Springer |
Total Pages | : 136 |
Release | : 2017-10-05 |
Genre | : Computers |
ISBN | : 3319664476 |
This thesis combines quantum electrical engineering with electron spin resonance, with an emphasis on unraveling emerging collective spin phenomena. The presented experiments, with first demonstrations of the cavity protection effect, spectral hole burning and bistability in microwave photonics, cover new ground in the field of hybrid quantum systems. The thesis starts at a basic level, explaining the nature of collective effects in great detail. It develops the concept of Dicke states spin-by-spin, and introduces it to circuit quantum electrodynamics (QED), applying it to a strongly coupled hybrid quantum system studied in a broad regime of several different scenarios. It also provides experimental demonstrations including strong coupling, Rabi oscillations, nonlinear dynamics, the cavity protection effect, spectral hole burning, amplitude bistability and spin echo spectroscopy.
Author | : Mohamed Benyoucef |
Publisher | : John Wiley & Sons |
Total Pages | : 910 |
Release | : 2023-05-04 |
Genre | : Science |
ISBN | : 3527837434 |
Photonic Quantum Technologies Brings together top-level research results to enable the development of practical quantum devices In Photonic Quantum Technologies: Science and Applications, the editor Mohamed Benyoucef and a team of distinguished scientists from different disciplines deliver an authoritative, one-stop overview of up-to-date research on various quantum systems. This unique book reviews the state-of-the-art research in photonic quantum technologies and bridges the fundamentals of the field with applications to provide readers from academia and industry, in one-location resource, with cutting-edge knowledge they need to have to understand and develop practical quantum systems for application in e.g., secure quantum communication, quantum metrology, and quantum computing. The book also addresses fundamental and engineering challenges en route to workable quantum devices and ways to circumvent or overcome them. Readers will also find: A thorough introduction to the fundamentals of quantum technologies, including discussions of the second quantum revolution (by Nobel Laureate Alain Aspect), solid-state quantum optics, and non-classical light and quantum entanglement Comprehensive explorations of emerging quantum technologies and their practical applications, including quantum repeaters, satellite-based quantum communication, quantum networks, silicon quantum photonics, integrated quantum systems, and future vision Practical discussions of quantum technologies with artificial atoms, color centers, 2D materials, molecules, atoms, ions, and optical clocks Perfect for molecular and solid-state physicists, Photonic Quantum Technologies: Science and Applications will also benefit industrial and academic researchers in photonics and quantum optics, graduate students in the field; engineers, chemists, and computer and material scientists.
Author | : Claude André Degueldre |
Publisher | : Springer |
Total Pages | : 308 |
Release | : 2017-10-11 |
Genre | : Technology & Engineering |
ISBN | : 331958006X |
This book provides an overview of passive and interactive analytical techniques for nuclear materials. The book aims to update readers on new techniques available and provide an introduction for those who are new to the topic or are looking to move into actinides and nuclear materials science. The characterization of actinide species and radioactive materials is vital for understanding how these elements and radioactive isotopes are formed and behave and how these materials can be improved. The analysis of the actinides or radioactive materials goes beyond spent fuel science to the applicable complete fuel cycle and including analysis of reactor materials.