Engineering Properties Of Ceramics
Download Engineering Properties Of Ceramics full books in PDF, epub, and Kindle. Read online free Engineering Properties Of Ceramics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : John B. Wachtman |
Publisher | : John Wiley & Sons |
Total Pages | : 496 |
Release | : 2009-08-13 |
Genre | : Technology & Engineering |
ISBN | : 9780470451502 |
A Comprehensive and Self-Contained Treatment of the Theory and Practical Applications of Ceramic Materials When failure occurs in ceramic materials, it is often catastrophic, instantaneous, and total. Now in its Second Edition, this important book arms readers with a thorough and accurate understanding of the causes of these failures and how to design ceramics for failure avoidance. It systematically covers: Stress and strain Types of mechanical behavior Strength of defect-free solids Linear elastic fracture mechanics Measurements of elasticity, strength, and fracture toughness Subcritical crack propagation Toughening mechanisms in ceramics Effects of microstructure on toughness and strength Cyclic fatigue of ceramics Thermal stress and thermal shock in ceramics Fractography Dislocation and plastic deformation in ceramics Creep and superplasticity of ceramics Creep rupture at high temperatures and safe life design Hardness and wear And more While maintaining the first edition's reputation for being an indispensable professional resource, this new edition has been updated with sketches, explanations, figures, tables, summaries, and problem sets to make it more student-friendly as a textbook in undergraduate and graduate courses on the mechanical properties of ceramics.
Author | : Joshua Pelleg |
Publisher | : Springer Science & Business |
Total Pages | : 782 |
Release | : 2014-04-22 |
Genre | : Science |
ISBN | : 3319044923 |
This book discusses the mechanical properties of ceramics and aims to provide both a solid background for undergraduate students, as well as serving as a text to bring practicing engineers up to date with the latest developments in this topic so they can use and apply these to their actual engineering work. Generally, ceramics are made by moistening a mixture of clays, casting it into desired shapes and then firing it to a high temperature, a process known as 'vitrification'. The relatively late development of metallurgy was contingent on the availability of ceramics and the know-how to mold them into the appropriate forms. Because of the characteristics of ceramics, they offer great advantages over metals in specific applications in which hardness, wear resistance and chemical stability at high temperatures are essential. Clearly, modern ceramics manufacturing has come a long way from the early clay-processing fabrication method, and the last two decades have seen the development of sophisticated techniques to produce a large variety of ceramic material. The chapters of this volume are ordered to help students with their laboratory experiments and guide their observations in parallel with lectures based on the current text. Thus, the first chapter is devoted to mechanical testing. A chapter of ductile and superplastic ceramic is added to emphasize their role in modern ceramics (chapter 2). These are followed by the theoretical basis of the subject. Various aspects of the mechanical properties are discussed in the following chapters, among them, strengthening mechanisms, time dependent and cyclic deformation of ceramics. Many practical illustrations are provided representing various observations encountered in actual ceramic-structures of particularly technical significance. A comprehensive list of references at the end of each chapter is included in this textbook to provide a broad basis for further studying the subject. The work also contains a unique chapter on a topic not discussed in other textbooks on ceramics concerning nanosized ceramics. This work will also be useful as a reference for materials scientists, not only to those who specialize in ceramics.
Author | : David J. Green |
Publisher | : Cambridge University Press |
Total Pages | : 348 |
Release | : 1998-07-16 |
Genre | : Technology & Engineering |
ISBN | : 9780521590877 |
Over the past twenty-five years ceramics have become key materials in the development of many new technologies as scientists have been able to design these materials with new structures and properties. An understanding of the factors that influence their mechanical behavior and reliability is essential. This book will introduce the reader to current concepts in the field. It contains problems and exercises to help readers develop their skills. This is a comprehensive introduction to the mechanical properties of ceramics, and is designed primarily as a textbook for advanced undergraduates in materials science and engineering. It will also be of value as a supplementary text for more general courses and to industrial scientists and engineers involved in the development of ceramic-based products, materials selection and mechanical design.
Author | : Dietrich Munz |
Publisher | : Springer Science & Business Media |
Total Pages | : 302 |
Release | : 2013-03-07 |
Genre | : Technology & Engineering |
ISBN | : 3642584071 |
The book gives a description of the failure phenomena of ceramic materials under mechanical loading, the methods to determine their properties, and the principles for material selection. The book presents fracture mechanical and statistical principles and their application to describe the scatter of strength and lifetime, while special chapters are devoted to creep behaviour, multiaxial failure criteria and thermal shock behaviour. XXXXXXX Neuer Text Describing how ceramic materials fracture and fail under mechanical loading, this book provides methods for determining the properties of ceramics, and gives criteria for selecting ceramic materials for particular applications. It also examines the fracture-mechanical and statistical principles and their use in understanding the strength and durability of ceramics. Special chapters are devoted to creep behavior, criteria for multiaxial failure, and behavior under thermal shock. Readers will gain insight into the design of reliable ceramic components.
Author | : David W. Richerson |
Publisher | : |
Total Pages | : 424 |
Release | : 1982 |
Genre | : Technology & Engineering |
ISBN | : |
Author | : C. Barry Carter |
Publisher | : Springer Science & Business Media |
Total Pages | : 775 |
Release | : 2013-01-04 |
Genre | : Technology & Engineering |
ISBN | : 1461435234 |
Ceramic Materials: Science and Engineering is an up-to-date treatment of ceramic science, engineering, and applications in a single, comprehensive text. Building on a foundation of crystal structures, phase equilibria, defects, and the mechanical properties of ceramic materials, students are shown how these materials are processed for a wide diversity of applications in today's society. Concepts such as how and why ions move, how ceramics interact with light and magnetic fields, and how they respond to temperature changes are discussed in the context of their applications. References to the art and history of ceramics are included throughout the text, and a chapter is devoted to ceramics as gemstones. This course-tested text now includes expanded chapters on the role of ceramics in industry and their impact on the environment as well as a chapter devoted to applications of ceramic materials in clean energy technologies. Also new are expanded sets of text-specific homework problems and other resources for instructors. The revised and updated Second Edition is further enhanced with color illustrations throughout the text.
Author | : Roy W. Rice |
Publisher | : CRC Press |
Total Pages | : 560 |
Release | : 1998-03-20 |
Genre | : Technology & Engineering |
ISBN | : 9780824701512 |
Focuses on the effects of porosity and microcracking on the physical properties of ceramics, particularly nominally single phase ceramics. The book elucidates the fundamental interrelationships determining the development and use of materials for actual and potential engineering needs. It aims to help in the understanding of porosity effects on other materials, from ceramic composties, cements and plasters to rocks, metals and polymers.;College or university bookshops may order five or more copies at a special student price, available on request.
Author | : M. Bengisu |
Publisher | : Springer Science & Business Media |
Total Pages | : 629 |
Release | : 2013-06-29 |
Genre | : Science |
ISBN | : 3662043505 |
A handy reference for technicians who want to understand the nature, properties and applications, of engineering ceramics. The book meets the needs of those working in the ceramics industry, as well as of technicians and engineers involved in the application of ceramic materials.
Author | : Philippe Boch |
Publisher | : John Wiley & Sons |
Total Pages | : 593 |
Release | : 2010-01-05 |
Genre | : Technology & Engineering |
ISBN | : 0470394544 |
This book is primarily an introduction to the vast family of ceramic materials. The first part is devoted to the basics of ceramics and processes: raw materials, powders synthesis, shaping and sintering. It discusses traditional ceramics as well as “technical” ceramics – both oxide and non-oxide – which have multiple developments. The second part focuses on properties and applications, and discusses both structural and functional ceramics, including bioceramics. The fields of abrasion, cutting and tribology illustrate the importance of mechanical properties. It also deals with the questions/answers of a ceramicist regarding electronuclear technology. As chemistry is an essential discipline for ceramicists, the book shows, in particular, what soft chemistry can contribute as a result of sol-gel methods.
Author | : Junichi Hojo |
Publisher | : Springer Nature |
Total Pages | : 237 |
Release | : 2019-11-15 |
Genre | : Technology & Engineering |
ISBN | : 9811399352 |
This book provides fundamental knowledge of ceramics science and technology in a compact volume. Based on inorganic chemistry, it is intended as a reader for graduate students and young researchers beginning work in ceramics. The importance of the book is that it provides a scientific understanding of structure, properties, and processing from the chemical aspect, leading to creation of future ceramics. Ceramics have high hardness, strength, thermal and chemical stability, as well as various electromagnetic functions. To take full advantage of ceramics, their use has been advanced to engineering and electronic ceramics. Most ceramics have been fabricated by powder processing, and new technologies have also evolved such as CVD and sol-gel methods: new ceramics aimed at new functions of highly pure oxides and artificial nitrides, carbides, and borides; fine ceramics focused on precise control of composition and microstructure; and design of unique morphology, such as nanoparticles, nanofibers, nanosheets, mesoporous materials, and hybrids. Materials are composed of atoms and molecules. They are assembled into crystals and are amorphous, leading to 3-D micro/nano structures. In addition to the topics described above, this book shows the importance of chemistry for materials design at the nanometer scale, and that chemistry develops new fields of environment, energy, informatics, biomaterials, and other areas.