Diesel Engine Engineering

Diesel Engine Engineering
Author: Andrei Makartchouk
Publisher: Andrei Makartchouk
Total Pages: 4
Release: 2002-03-12
Genre: Technology & Engineering
ISBN: 0824707028

Of the forces in a four-stroke diesel engine with in-line cylinders. Mean tangential force. Summary of the forces acting in a two-stroke diesel engine. Summary of the forces acting in a V-diesel engine. Diesel engine torque. Balancing of torque oscillation and selection of flywheel. Applied masses and moments of inertia of rotating components. Starting up a diesel engine. Balancing engine vibration -- Ch. 3. Design and Structural Analysis of Diesel Engine Components. Bedplate and base. Main bearing caps. Crankcase. Tension rods. Cylinder jacket and cylinder liner. Cylinder head. Piston. Piston pin. Piston rings. Connecting rod. Connecting rod bolts. Crankshaft. Flywheel bolts. Factor of safety of diesel engine components.

Reciprocating Machinery Dynamics

Reciprocating Machinery Dynamics
Author: Abdulla S. Rangwala
Publisher: New Age International
Total Pages: 556
Release: 2006
Genre: Machinery, Dynamics of
ISBN: 9788122418132

This Book Primarily Written To Meet The Needs Of Practicing Engineers In A Large Variety Of Industries Where Reciprocating Machines Are Used, Although All Of The Material Is Suitable For College Undergraduate Level Design Engineering Courses. It Is Expected That The Reader Is Familiar With Basic To Medium Level Calculus Offered At The College Undergraduate Level.The First Chapter Of The Book Deals With Classical Vibration Theory, Starting With A Single Degree Of Freedom System, To Develop Concepts Of Damping, Response And Unbalance. The Second Chapter Deals With Types And Classification Of Reciprocating Machines, While The Third Chapter Discusses Detail-Design Aspects Of Machine Components. The Fourth Chapter Introduces The Dynamics Of Slider And Cranks Mechanism, And Provides Explanation Of The Purpose And Motion Of Various Components.The Fifth Chapter Looks Into Dynamic Forces Created In The System, And Methods To Balance Gas Pressure And Inertia Loads. The Sixth Chapter Explains The Torsional Vibration Theory And Looks At The Different Variables Associated With It. Chapter Seven Analyzes Flexural Vibrations And Lateral Critical Speed Concepts, Together With Journal Bearings And Their Impact On A Rotating System. Advanced Analytical Techniques To Determine Dynamic Characteristics Of All Major Components Of Reciprocating Machinery Are Presented In Chapter Eight. Methods To Mitigate Torsional Vibrations In A Crankshaft Using Absorbers Are Analyzed In Close Detail. Various Mechanisms Of Flexural Excitation Sources And Their Response On A Rotor-Bearing System Are Explored. Stability Of A Rotor And Different Destabilizing Mechanisms Are Also Included In This Chapter.Techniques In Vibration Measurement And Balancing Of Reciprocating And Rotating Systems Are Presented In Chapter Nine. Chapter Ten Looks At Computational Fluid Dynamics Aspects Of Flow Through Intake And Exhaust Manifolds, As Well As Fluid Flow Induced Component Vibrations. Chapter Eleven Extends This Discussion To Pressure Pulsations In Piping Attached To Reciprocating Pumps And Compressors. Chapter Twelve Considers The Interaction Between The Structural Dynamics Of Components And Noise, Together With Methods To Improve Sound Quality. Optimized Design Of Components Of Reciprocating Machinery For Specified Parameters And Set Target Values Is Investigated At Length In Chapter Thirteen. Practicing Engineers Interested In Applying The Theoretical Model To Their Own Operating System Will Find Case Histories Shown In Chapter FourteenUseful.

Introduction to Modeling and Control of Internal Combustion Engine Systems

Introduction to Modeling and Control of Internal Combustion Engine Systems
Author: Lino Guzzella
Publisher: Springer Science & Business Media
Total Pages: 303
Release: 2013-03-14
Genre: Technology & Engineering
ISBN: 3662080036

Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.