Energy Transfers in Atmosphere and Ocean

Energy Transfers in Atmosphere and Ocean
Author: Carsten Eden
Publisher: Springer
Total Pages: 312
Release: 2019-01-23
Genre: Computers
ISBN: 3030057046

This book describes a recent effort combining interdisciplinary expertise within the Collaborative Research Centre “Energy transfers in atmosphere and ocean” (TRR-181), which was funded by the German Research Foundation (DFG). Energy transfers between the three dynamical regimes – small-scale turbulence, internal gravity waves and geostrophically balanced motion – are fundamental to the energy cycle of both the atmosphere and the ocean. Nonetheless, they remain poorly understood and quantified, and have yet to be adequately represented in today’s climate models. Since interactions between the dynamical regimes ultimately link the smallest scales to the largest ones through a range of complex processes, understanding these interactions is essential to constructing atmosphere and ocean models and to predicting the future climate. To this end, TRR 181 combines expertise in applied mathematics, meteorology, and physical oceanography. This book provides an overview of representative specific topics addressed by TRR 181, ranging from - a review of a coherent hierarchy of models using consistent scaling and approximations, and revealing the underlying Hamiltonian structure - a systematic derivation and implementation of stochastic and backscatter parameterisations - an exploration of the dissipation of large-scale mean or eddying balanced flow and ocean eddy parameterisations; and - a study on gravity wave breaking and mixing, the interaction of waves with the mean flow and stratification, wave-wave interactions and gravity wave parameterisations to topics of a more numerical nature such as the spurious mixing and dissipation of advection schemes, and direct numerical simulations of surface waves at the air-sea interface. In TRR 181, the process-oriented topics presented here are complemented by an operationally oriented synthesis focusing on two climate models currently being developed in Germany. In this way, the goal of TRR 181 is to help reduce the biases in and increase the accuracy of atmosphere and ocean models, and ultimately to improve climate models and climate predictions.

Energy Transfers in Atmosphere and Ocean

Energy Transfers in Atmosphere and Ocean
Author: Carsten Eden
Publisher: Springer
Total Pages: 312
Release: 2019-02-05
Genre: Computers
ISBN: 9783030057039

This book describes a recent effort combining interdisciplinary expertise within the Collaborative Research Centre “Energy transfers in atmosphere and ocean” (TRR-181), which was funded by the German Research Foundation (DFG). Energy transfers between the three dynamical regimes – small-scale turbulence, internal gravity waves and geostrophically balanced motion – are fundamental to the energy cycle of both the atmosphere and the ocean. Nonetheless, they remain poorly understood and quantified, and have yet to be adequately represented in today’s climate models. Since interactions between the dynamical regimes ultimately link the smallest scales to the largest ones through a range of complex processes, understanding these interactions is essential to constructing atmosphere and ocean models and to predicting the future climate. To this end, TRR 181 combines expertise in applied mathematics, meteorology, and physical oceanography. This book provides an overview of representative specific topics addressed by TRR 181, ranging from - a review of a coherent hierarchy of models using consistent scaling and approximations, and revealing the underlying Hamiltonian structure - a systematic derivation and implementation of stochastic and backscatter parameterisations - an exploration of the dissipation of large-scale mean or eddying balanced flow and ocean eddy parameterisations; and - a study on gravity wave breaking and mixing, the interaction of waves with the mean flow and stratification, wave-wave interactions and gravity wave parameterisations to topics of a more numerical nature such as the spurious mixing and dissipation of advection schemes, and direct numerical simulations of surface waves at the air-sea interface. In TRR 181, the process-oriented topics presented here are complemented by an operationally oriented synthesis focusing on two climate models currently being developed in Germany. In this way, the goal of TRR 181 is to help reduce the biases in and increase the accuracy of atmosphere and ocean models, and ultimately to improve climate models and climate predictions.

Ocean Modeling in an Eddying Regime

Ocean Modeling in an Eddying Regime
Author: Matthew W. Hecht
Publisher: John Wiley & Sons
Total Pages: 654
Release: 2013-04-30
Genre: Science
ISBN: 1118671996

Published by the American Geophysical Union as part of the Geophysical Monograph Series, Volume 177. This monograph is the first to survey progress in realistic simulation in a strongly eddying regime made possible by recent increases in computational capability. Its contributors comprise the leading researchers in this important and constantly evolving field. Divided into three parts Oceanographic Processes and Regimes: Fundamental Questions Ocean Dynamics and State: From Regional to Global Scale, and Modeling at the Mesoscale: State of the Art and Future Directions The volume details important advances in physical oceanography based on eddy resolving ocean modeling. It captures the state of the art and discusses issues that ocean modelers must consider in order to effectively contribute to advancing current knowledge, from subtleties of the underlying fluid dynamical equations to meaningful comparison with oceanographic observations and leading-edge model development. It summarizes many of the important results which have emerged from ocean modeling in an eddying regime, for those interested broadly in the physical science. More technical topics are intended to address the concerns of those actively working in the field.

Energy Transfers in Atmosphere and Ocean

Energy Transfers in Atmosphere and Ocean
Author: Carsten Eden
Publisher:
Total Pages: 312
Release: 2019
Genre: Energy transfer
ISBN: 9783030057053

This book describes a recent effort combining interdisciplinary expertise within the Collaborative Research Centre "Energy transfers in atmosphere and ocean" (TRR-181), which was funded by the German Research Foundation (DFG). Energy transfers between the three dynamical regimes - small-scale turbulence, internal gravity waves and geostrophically balanced motion - are fundamental to the energy cycle of both the atmosphere and the ocean. Nonetheless, they remain poorly understood and quantified, and have yet to be adequately represented in today's climate models. Since interactions between the dynamical regimes ultimately link the smallest scales to the largest ones through a range of complex processes, understanding these interactions is essential to constructing atmosphere and ocean models and to predicting the future climate. To this end, TRR 181 combines expertise in applied mathematics, meteorology, and physical oceanography. This book provides an overview of representative specific topics addressed by TRR 181, ranging from - a review of a coherent hierarchy of models using consistent scaling and approximations, and revealing the underlying Hamiltonian structure - a systematic derivation and implementation of stochastic and backscatter parameterisations - an exploration of the dissipation of large-scale mean or eddying balanced flow and ocean eddy parameterisations; and - a study on gravity wave breaking and mixing, the interaction of waves with the mean flow and stratification, wave-wave interactions and gravity wave parameterisations to topics of a more numerical nature such as the spurious mixing and dissipation of advection schemes, and direct numerical simulations of surface waves at the air-sea interface. In TRR 181, the process-oriented topics presented here are complemented by an operationally oriented synthesis focusing on two climate models currently being developed in Germany. In this way, the goal of TRR 181 is to help reduce the biases in and increase the accuracy of atmosphere and ocean models, and ultimately to improve climate models and climate predictions.

Across-scale Energy Transfer in the Southern Ocean

Across-scale Energy Transfer in the Southern Ocean
Author: Laur Ferris
Publisher:
Total Pages: 0
Release: 2022
Genre: Internal waves
ISBN:

Numerous physics are responsible for forward energy cascade at oceanic fronts but their roles are not fully clear. This dissertation investigates wind-sheared turbulence in the ocean surface boundary layer (OSBL), internal wave interactions in the ocean interior, and instability-driven turbulence in energetic jets; with attention paid to the parameterizations used to quantify them. At the OSBL, meteorological forcing injects turbulent kinetic energy (TKE), mixing the upper ocean and rapidly transforming its density structure. In the absence of direct observations or capability to resolve sub-grid scale turbulence in ocean models, the community relies on boundary layer scalings (BLS) of shear and convective turbulence to represent this mixing. Despite the importance of near-surface mixing, ubiquitous BLS representations of these processes have been underassessed in high energy forcing regimes such as the Southern Ocean. Glider microstructure from AUSSOM (Autonomous Sampling of Southern Ocean Mixing), a long-duration glider mission, is leveraged to show BLS of shear turbulence exhibits a consistent bias in estimating TKE dissipation rates in the OSBL. In the interior, finescale strain parameterization (FSP) of the TKE dissipation rate has become a widely used method for observing mixing, solving a coverage problem where only CTD profiles are available. However there are limitations in its application to intense frontal regions where adjacent warm/salty and cold/fresh waters create double diffusive instability. Direct turbulence measurements from DIMES (Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean) and AUSSOM are used to show FSP can have biases of up to 8 orders of magnitude below the mixed layer when physics associated with T/S fronts are present. FSP often fails to produce reliable results in frontal zones where temperature-salinity (T/S) intrusive features contaminate the CTD strain spectrum, as well as where the aspect ratio of the internal wave spectrum is known to vary greatly with depth (as in the Southern Ocean). We propose that the FSP methodology be modified to include a density ratio-based data exclusion rule to avoid contamination by double diffusive instabilities in frontal zones. At energetic frontal jets, symmetric instability (SI) has gained momentum for explaining enhanced turbulence. Submesoscale frontal instabilities are well-established by idealized analytical and numerical studies to be a significant source of TKE in the global ocean. However, observations of TKE dissipation enhanced by SI are few, and it is unknown to what order in the real ocean this process is active. AUSSOM measured elevated TKE dissipation rates throughout the core of the Polar Front (PF). Motivated by this finding, we use a 1-km Regional Ocean Modeling System hindcast to investigate the role of SI in energy cascade and Southern Ocean mixing. We extend popular overturning instability criteria for application to ageostrophic flows. SI of the centrifugal/inertial variety is widespread along the northern continental margins of the Antarctic Circumpolar Current due to topographic shearing of the anticyclonic side of PF-associated jets but is notably limited (above 1-km scale) to the mixed layer at open-ocean fronts. Contrarily, modeled velocity fields are strongly indicative of critical layers and other internal wave interactions dominating the open-ocean elevated TKE budget even at energetic fronts.

Ocean-Atmosphere Interactions of Gases and Particles

Ocean-Atmosphere Interactions of Gases and Particles
Author: Peter S. Liss
Publisher: Springer
Total Pages: 366
Release: 2013-12-18
Genre: Science
ISBN: 3642256430

The oceans and atmosphere interact through various processes, including the transfer of momentum, heat, gases and particles. In this book leading international experts come together to provide a state-of-the-art account of these exchanges and their role in the Earth-system, with particular focus on gases and particles. Chapters in the book cover: i) the ocean-atmosphere exchange of short-lived trace gases; ii) mechanisms and models of interfacial exchange (including transfer velocity parameterisations); iii) ocean-atmosphere exchange of the greenhouse gases carbon dioxide, methane and nitrous oxide; iv) ocean atmosphere exchange of particles and v) current and future data collection and synthesis efforts. The scope of the book extends to the biogeochemical responses to emitted / deposited material and interactions and feedbacks in the wider Earth-system context. This work constitutes a highly detailed synthesis and reference; of interest to higher-level university students (Masters, PhD) and researchers in ocean-atmosphere interactions and related fields (Earth-system science, marine / atmospheric biogeochemistry / climate). Production of this book was supported and funded by the EU COST Action 735 and coordinated by the International SOLAS (Surface Ocean- Lower Atmosphere Study) project office.