Water and Energy

Water and Energy
Author: Gustaf Olsson
Publisher: IWA Publishing
Total Pages: 492
Release: 2015-06-14
Genre: Science
ISBN: 1780406932

Rapid and important developments in the area of energy - water nexus over the last two to three years have been significant. This new edition of Water and Energy: Threats and Opportunities is timely and continues to highlight the inextricable link between water and energy, providing an up-to-date overview of the subject with helpful detailed summaries of the technical literature. Water and Energy has been up-dated throughout and major changes are: new chapters on global warming and fossil fuels, including shale gas and fracking; the consequences of the Deepwater Horizon accident in the Mexican Gulf and the Niger Delta oil spills; new developments in hydropower; and continued competition between food, water and energy. Water and Energy Threats and Opportunities, 2e creates an awareness of the important couplings between water and energy. It shows how energy is used in all the various water cycle operations and demonstrates how water is used and misused in all kinds of energy production and generation.Population increase, climate change and an increasing competition between food and fuel production create enormous pressures on both water and energy availability. Since there is no replacement for water, water security looks more crucial than energy security. This is true not only in developing countries but also in the most advanced countries. For example, the western parts of the USA suffer from water scarcity that provides a real security threat. Part One of the book describes the water-energy nexus, the conflicts and competitions and the couplings between water security, energy security, and food security. Part Two captures how climate change, population increase and the growing food demand will have major impact on water availability in many countries in the world. Part Three describes water for energy and how energy production and conversion depend on water availability. As a consequence, all planning has to take both water and energy into consideration. The environmental (including water) consequences of oil and coal exploration and refining are huge, in North America as well as in the rest of the world. Furthermore, oil leak accidents have hit America, Africa, Europe as well as Asia. The consequences of hydropower are discussed and the competition between hydropower generation, flood control and water storage is illustrated. The importance of water for cooling thermal power plants is described, as this was so tragically demonstrated at the Fukushima nuclear plants in 2011. Climate change will further emphasize the strong coupling between water availability and the operation of power plants. Part Four analyses energy for water - how water production and treatment depend on energy. The book shows that a lot can be done to improve equipment, develop processes and apply advanced monitoring and control to save energy for water operations. Significant amounts of energy can be saved by better pumping, the reduction of leakages, controlled aeration in biological wastewater treatment, more efficient biogas production, and by improved desalination processes. There are 3 PowerPoint presentations available for Water and Energy - threats and opportunities, 2e. About the author Gustaf Olsson, Professor Em. in Industrial Automation, Lund University, Sweden Since 2006, Gustaf has been Professor Emeritus at Lund University, Sweden. Gustaf has devoted his research to control and automation in water systems, electrical power systems and process industries. From 2006 to 2008 he was part time professor in electrical power systems at Chalmers University of Technology, Sweden. He is guest professor at the Technical University of Malaysia (UTM) and at the Tsinghua University in Beijing, China and he is an honorary faculty member of the Exeter University in UK. Between 2005 and 2010 he was the editor-in-chief of the journals Water Science and Technology and Water Science and Technology/Water Supply, (IWA Publishing). From 2007 to 2010, he was a member of the IWA Board of Directors and in 2010 he received the IWA Publication Award. In 2012 he was the awardee of an Honorary Doctor degree at UTM and an Honorary Membership of IWA. Gustaf has guided 23 PhDs and a few hundred MSc students through their exams and has received the Lund University pedagogical award for distinguished achievements in the education". The Lund University engineering students elected him as the teacher of the year He has spent extended periods as a guest professor and visiting researcher at universities and companies in the USA, Australia and Japan and has been invited as a guest lecturer in 19 countries outside Sweden. He has authored nine books published in English, Russian, German and Chinese and and contributed with chapters in another 19 books as well as more than 170 scientific publications.

Improving Energy Efficiency in Industrial Energy Systems

Improving Energy Efficiency in Industrial Energy Systems
Author: Patrik Thollander
Publisher: Springer Science & Business Media
Total Pages: 160
Release: 2012-08-10
Genre: Technology & Engineering
ISBN: 1447141628

Industrial energy efficiency is one of the most important means of reducing the threat of increased global warming. Research however states that despite the existence of numerous technical energy efficiency measures, its deployment is hindered by the existence of various barriers to energy efficiency. The complexity of increasing energy efficiency in manufacturing industry calls for an interdisciplinary approach to the issue. Improving energy efficiency in industrial energy systems applies an interdisciplinary perspective in examining energy efficiency in industrial energy systems, and discusses how “cross-pollinating” perspectives and theories from the social and engineering sciences can enhance our understanding of barriers, energy audits, energy management, policies, and programmes as they pertain to improved energy efficiency in industry. Apart from classical technical approaches from engineering sciences, Improving energy efficiency in industrial energy systems couples a sociotechnical perspective to increased energy efficiency in industry, showing that industrial energy efficiency can be expected to be shaped by social and commercial processes and built on knowledge, routines, institutions, and methods established in networks. The book can be read by researchers and policy-makers, as well as scholars and practicians in the field. “This book is extremely valuable for anyone who is designing or executing energy efficiency policies, schemes or projects aiming at SMEs. Both authors deserve the highest respect, and the combination of their expertise makes the results truly unique.” - Daniel Lundqvist, programme manager at the Swedish energy agency “For anyone interested in improving energy efficiency in industry, this is a must-read. The book combines tools from social science and engineering to discuss the state of art today as well as possible development path tomorrow. This is a compelling book that I find useful both in my teaching and my research.” - Kajsa Ellegård, Professor at Linköping University, Sweden "The book Improving energy efficiency in industrial energy systems is a novel approach on how improved levels of energy efficiency can be reached in industrial energy systems by merging engineering with social sciences. It is with delight that I can recommend their book to anyone interested in the field.”- Mats Söderström, Director Energy Systems Programme, Linköping University, Sweden

Energy Efficiency in the Water Industry

Energy Efficiency in the Water Industry
Author: M. J. Brandt
Publisher:
Total Pages: 105
Release: 2010
Genre: Energy consumption
ISBN:

"The objective of this research study is to development a compendium of best practice in the energy efficient design and operation of water industry assets. Through detailed examination of current best practice and technologies, the study has identified the promising development and future opportunities to help deliver: incremental improvements in energy efficiency through optimisation of existing assets and operations; more substantial improvements in energy efficiency from the adoption of a novel (but proven at full scale) technologies"--Executive summary.

Energy Efficiency in Electric Devices, Machines and Drives

Energy Efficiency in Electric Devices, Machines and Drives
Author: Gorazd Štumberger
Publisher: MDPI
Total Pages: 218
Release: 2020-06-18
Genre: Technology & Engineering
ISBN: 3039363565

This Special Issue deals with improvements in the energy efficiency of electric devices, machines, and drives, which are achieved through improvements in the design, modelling, control, and operation of the system. Properly sized and placed coils of a welding transformer can reduce the required iron core size and improve the efficiency of the welding system operation. New structures of the single-phase field excited flux switching machine improve its performance in terms of torque, while having higher back-EMF and unbalanced electromagnetic forces. A properly designed rotor notch reduces the torque ripple and cogging torque of interior permanent magnet motors for the drive platform of electric vehicles, resulting in lower vibrations and noise. In the field of modelling, the torque estimation of a Halbach array surface permanent magnet motor with a non-overlapping winding layout was improved by introducing an analytical two-dimensional subdomain model. A general method for determining the magnetically nonlinear two-axis dynamic models of rotary and linear synchronous reluctance machines and synchronous permanent magnet machines is introduced that considers the effects of slotting, mutual interaction between the slots and permanent magnets, saturation, cross saturation, and end effects. Advanced modern control solutions, such as neural network-based model reference adaptive control, fuzzy control, senseless control, torque/speed tracking control derived from the 3D non-holonomic integrator, including drift terms, maximum torque per ampere, and maximum efficiency characteristics, are applied to improve drive performance and overall system operation.

Water - Energy Interactions in Water Reuse

Water - Energy Interactions in Water Reuse
Author: Valentina Lazarova
Publisher: IWA Publishing
Total Pages: 345
Release: 2012-04-30
Genre: Science
ISBN: 184339541X

The focus of Water-Energy Interactions in Water Reuse is to collect original contributions and some relevant publications from recent conference proceedings in order to provide state-of-art information on the use of energy in wastewater treatment and reuse systems. Special focus is given to innovative technologies, such as membrane bioreactors, high pressure membrane filtration systems, and novel water reuse processes. A comparison of energy consumption in water reuse systems and desalination will be also provided. Water-Energy Interactions in Water Reuse covers the use of energy in conventional and advanced wastewater treatment for various water reuse applications, including carbon footprint, energy efficiency, energy self-sufficient facilities and novel technologies, such as microbial fuel cells and biogas valorisation. It is of real value to water utility managers; policy makers for water and wastewater treatment; water resources planners, and researchers and students in environmental engineering and science. Editors: Valentina Lazarova, Suez Environnement, France, Kwang-Ho Choo, Kyungpook National University, Korea, Peter Cornel, Technical University of Darmstadt, Germany

Energy Conservation Indicators II

Energy Conservation Indicators II
Author: Tihomir Morovic
Publisher: Springer Science & Business Media
Total Pages: 336
Release: 2012-12-06
Genre: Business & Economics
ISBN: 3642748406

Energy Conservation Indicators is a methodology to break down energy consumption data into their component parts in the same way as those which are due to annual weather fluctuations, business cycle, structural changes in the economy and higher energy efficiency. This methodology is applied for the first time to all twelve Member Countries of the European Communities for the period 1979 to 1985. It represents a tool for a long-term monitoring of the efforts towards the goal set by the Council of Ministers of the European Community to achieve a 20% improvement in intensity of final energy demand between 1985 and 1995. In addition, it is used by the Commission of the European Communities for considerations regarding energy conservation policies for the Community. The results of the analysis performed showed that the goal set by the Council cannot be reached if the current trends prevail in the years to come. The reasons are the declining impact of structural changes towards less energy-intensive production and the increasing level of energy-consuming comfort in the residential and private transportation sectors.