Energy And Materials
Download Energy And Materials full books in PDF, epub, and Kindle. Read online free Energy And Materials ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Sam Zhang |
Publisher | : CRC Press |
Total Pages | : 529 |
Release | : 2020-10-05 |
Genre | : Science |
ISBN | : 1000176673 |
Discusses a wide range of material types, such as nanomaterials, carbonaceous electrocatalysts and electrolytes, thin films, phase change materials, 2D energy materials, triboelectric materials, and membrane materials Describes such applications as flexible energy storage devices, sensors, energy storage batteries, fuel and solar cells, photocatalytic wastewater treatment, and more Aimed at researchers and technologists working to solve alternative energy issues
Author | : Sanjay J. Dhoble |
Publisher | : Elsevier |
Total Pages | : 630 |
Release | : 2021-08-15 |
Genre | : Science |
ISBN | : 0128237112 |
Includes details of the fundamental phenomenological theories of solar cells, Li ion/ Li-air/Li-S batteries, fuel cells and their energy storage mechanisms. Discusses properties of various energy materials in addition to their device operation and evaluation. - Includes details of the fundamental phenomenological theories of solar cells, Li ion/ Li-air/Li-S batteries, fuel cells and their energy storage mechanisms - Discusses properties of various energy materials in addition to their device operation and evaluation
Author | : Aliaksandr S. Bandarenka |
Publisher | : CRC Press |
Total Pages | : 252 |
Release | : 2022-01-31 |
Genre | : Science |
ISBN | : 100052681X |
Energy Materials: A Short Introduction to Functional Materials for Energy Conversion and Storage provides readers with an accessible overview of the functional materials currently employed or investigated for energy provision, conversion, and storage. Rather than exploring the physical and chemical basics of energy conversion and storage, this book focuses on the various materials used in this field with simple explanations of their design principles, specific functionality, and quantitative figures of merit. It is suited for advanced undergraduate and graduate students studying energy and energy materials in physics, material science, engineering, and chemistry courses, as well as scientists starting their research in the field of functional materials for energy applications. Key Features: Provides an accessible introduction to complex subjects in simple terms with pedagogical features to enhance learning Contains the latest developments in this exciting and growing area Discusses examples from modern high-impact research and applications
Author | : Kathy Lu |
Publisher | : John Wiley & Sons |
Total Pages | : 625 |
Release | : 2014-08-07 |
Genre | : Technology & Engineering |
ISBN | : 1118892380 |
First authored book to address materials' role in the quest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are some of many facets of energy challenges covered in current research. However, there has not been a monograph that directly covers a spectrum of materials issues in the context of energy conversion, harvesting and storage. Addressing one of the most pressing problems of our time, Materials in Energy Conversion, Harvesting, and Storage illuminates the roles and performance requirements of materials in energy and demonstrates why energy materials are as critical and far-reaching as energy itself. Each chapter starts out by explaining the role of a specific energy process in today’s energy landscape, followed by explanation of the fundamental energy conversion, harvesting, and storage processes. Well-researched and coherently written, Materials in Energy Conversion, Harvesting, and Storage covers: The availability, accessibility, and affordability of different energy sources Energy production processes involving material uses and performance requirements in fossil, nuclear, solar, bio, wind, hydrothermal, geothermal, and ocean energy systems Issues of materials science in energy conversion systems Issues of energy harvesting and storage (including hydrogen storage) and materials needs Throughout the book, illustrations and images clarify and simplify core concepts, techniques, and processes. References at the end of each chapter serve as a gateway to the primary literature in the field. All chapters are self-contained units, enabling instructors to easily adapt this book for coursework. This book is suitable for students and professors in science and engineering who look to obtain comprehensive understanding of different energy processes and materials issues. In setting forth the latest advances and new frontiers of research, experienced materials researchers and engineers can utilize it as a comprehensive energy material reference book.
Author | : Kuan Yew Cheong |
Publisher | : Elsevier |
Total Pages | : 490 |
Release | : 2018-08-09 |
Genre | : Technology & Engineering |
ISBN | : 0128137959 |
Emerging Materials for Energy Conversion and Storage presents the state-of-art of emerging materials for energy conversion technologies (solar cells and fuel cells) and energy storage technologies (batteries, supercapacitors and hydrogen storage). The book is organized into five primary sections, each with three chapters authored by worldwide experts in the fields of materials science, physics, chemistry and engineering. It covers the fundamentals, functionalities, challenges and prospects of different classes of emerging materials, such as wide bandgap semiconductors, oxides, carbon-based nanostructures, advanced ceramics, chalcogenide nanostructures, and flexible organic electronics nanomaterials. The book is an important reference for students and researchers (from academics, but also industry) interested in understanding the properties of emerging materials. - Explores the fundamentals, challenges and prospects for the application of emerging materials in the development of energy conversion and storage devices - Presents a discussion of solar cell and photovoltaic, fuel cell, battery electrode, supercapacitor and hydrogen storage applications - Includes notable examples of energy devices based on emerging materials to illustrate recent advances in this field
Author | : J A Kilner |
Publisher | : Elsevier |
Total Pages | : 715 |
Release | : 2012-09-28 |
Genre | : Technology & Engineering |
ISBN | : 0857096370 |
Global demand for low cost, efficient and sustainable energy production is ever increasing. Driven by recent discoveries and innovation in the science and technology of materials, applications based on functional materials are becoming increasingly important. Functional materials for sustainable energy applications provides an essential guide to the development and application of these materials in sustainable energy production.Part one reviews functional materials for solar power, including silicon-based, thin-film, and dye sensitized photovoltaic solar cells, thermophotovoltaic device modelling and photoelectrochemical cells. Part two focuses on functional materials for hydrogen production and storage. Functional materials for fuel cells are then explored in part three where developments in membranes, catalysts and membrane electrode assemblies for polymer electrolyte and direct methanol fuel cells are discussed, alongside electrolytes and ion conductors, novel cathodes, anodes, thin films and proton conductors for solid oxide fuel cells. Part four considers functional materials for demand reduction and energy storage, before the book concludes in part five with an investigation into computer simulation studies of functional materials.With its distinguished editors and international team of expert contributors, Functional materials for sustainable energy applications is an indispensable tool for anyone involved in the research, development, manufacture and application of materials for sustainable energy production, including materials engineers, scientists and academics in the rapidly developing, interdisciplinary field of sustainable energy. - An essential guide to the development and application of functional materials in sustainable energy production - Reviews functional materials for solar power - Focuses on functional materials for hydrogen production and storage, fuel cells, demand reduction and energy storage
Author | : Vincent Dusastre |
Publisher | : World Scientific |
Total Pages | : 360 |
Release | : 2011 |
Genre | : Science |
ISBN | : 9814317640 |
The search for cleaner, cheaper, smaller and more efficient energy technologies has to a large extent been motivated by the development of new materials. The aim of this collection of articles is therefore to focus on what materials-based solutions can offer and show how the rationale design and improvement of their physical and chemical properties can lead to energy-production alternatives that have the potential to compete with existing technologies. In terms of alternative means to generate electricity that utilize renewable energy sources, the most dramatic breakthroughs for both mobile (i.e., transportation) and stationary applications are taking place in the fields of solar and fuel cells. And from an energy-storage perspective, exciting developments can be seen emerging from the fields of rechargeable batteries and hydrogen storage.
Author | : David S. Ginley |
Publisher | : Cambridge University Press |
Total Pages | : 773 |
Release | : 2011-11-30 |
Genre | : Technology & Engineering |
ISBN | : 1139502689 |
How will we meet rising energy demands? What are our options? Are there viable long-term solutions for the future? Learn the fundamental physical, chemical and materials science at the heart of renewable/non-renewable energy sources, future transportation systems, energy efficiency and energy storage. Whether you are a student taking an energy course or a newcomer to the field, this textbook will help you understand critical relationships between the environment, energy and sustainability. Leading experts provide comprehensive coverage of each topic, bringing together diverse subject matter by integrating theory with engaging insights. Each chapter includes helpful features to aid understanding, including a historical overview to provide context, suggested further reading and questions for discussion. Every subject is beautifully illustrated and brought to life with full color images and color-coded sections for easy browsing, making this a complete educational package. Fundamentals of Materials for Energy and Environmental Sustainability will enable today's scientists and educate future generations.
Author | : Alena Bleicher |
Publisher | : Academic Press |
Total Pages | : 258 |
Release | : 2020-08-05 |
Genre | : Technology & Engineering |
ISBN | : 0128235543 |
The Material Basis of Energy Transitions explores the intersection between critical raw material provision and the energy system. Chapters draw on examples and case studies involving energy technologies (e.g., electric power, transport) and raw material provision (e.g., mining, recycling), and consider these in their regional and global contexts. The book critically discusses issues such as the notion of criticality in the context of a circular economy, approaches for estimating the need for raw materials, certification schemes for raw materials, the role of consumers, and the impact of renewable energy development on resource conflicts. Each chapter deals with a specific issue that characterizes the interdependency between critical raw materials and renewable energies by examining case studies from a particular conceptual perspective. The book is a resource for students and researchers from the social sciences, natural sciences, and engineering, as well as interdisciplinary scholars interested in the field of renewable energies, the circular economy, recycling, transport, and mining. The book is also of interest to policymakers in the fields of renewable energy, recycling, and mining, professionals from the energy and resource industries, as well as energy experts and consultants looking for an interdisciplinary assessment of critical materials. - Provides a comprehensive overview of key issues related to the nexus between renewable energy and critical raw materials - Explores interdisciplinary perspectives from the natural sciences, engineering, and social sciences - Discusses critical strategies to address the nexus from a practitioner's perspective
Author | : Kuan Yew Cheong |
Publisher | : Elsevier |
Total Pages | : 506 |
Release | : 2021-10-01 |
Genre | : Technology & Engineering |
ISBN | : 0128230703 |
Sustainable Materials and Green Processing for Energy Conversion provides a concise reference on green processing and synthesis of materials required for the next generation of devices used in renewable energy conversion and storage. The book covers the processing of bio-organic materials, environmentally-friendly organic and inorganic sources of materials, synthetic green chemistry, bioresorbable and transient properties of functional materials, and the concept of sustainable material design. The book features chapters by worldwide experts and is an important reference for students, researchers, and engineers interested in gaining extensive knowledge concerning green processing of sustainable, green functional materials for next generation energy devices. Additionally, functional materials used in energy devices must also be able to degrade and decompose with minimum energy after being disposed of at their end-of-life. Environmental pollution is one of the global crises that endangers the life cycles of living things. There are multiple root causes of this pollution, including industrialization that demands a huge supply of raw materials for the production of products related to meeting the demands of the Internet-of-Things. As a result, improvement of material and product life cycles by incorporation of green, sustainable principles is essential to address this challenging issue. - Offers a resourceful reference for readers interested in green processing of environmentally-friendly and sustainable materials for energy conversion and storage devices - Focuses on designing of materials through green-processing concepts - Highlights challenges and opportunities in green processing of renewable materials for energy devices