Energetic Materials At Extreme Conditions
Download Energetic Materials At Extreme Conditions full books in PDF, epub, and Kindle. Read online free Energetic Materials At Extreme Conditions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : David I.A. Millar |
Publisher | : Springer Science & Business Media |
Total Pages | : 232 |
Release | : 2011-09-24 |
Genre | : Technology & Engineering |
ISBN | : 3642231322 |
David I.A. Millar's thesis explores the effects of extreme conditions on energetic materials. His study identifies and structurally characterises new polymorphs obtained at high pressures and/or temperatures. The performance of energetic materials (pyrotechnics, propellants and explosives) can depend on a number of factors including sensitivity to detonation, detonation velocity, and chemical and thermal stability. Polymorphism and solid-state phase transitions may therefore have significant consequences for the performance and safety of energetic materials. In order to model the behaviour of these important materials effectively under operational conditions it is essential to obtain detailed structural information at a range of temperatures and pressures.
Author | : Donald L Thompson |
Publisher | : World Scientific |
Total Pages | : 531 |
Release | : 2005-08-02 |
Genre | : Science |
ISBN | : 9814480908 |
Few books cover experimental and theoretical methods to characterize decomposition, combustion and detonation of energetic materials. This volume, by internationally known and major contributors to the field, is unique because it summarizes the most important recent work, what we know with confidence, and what main areas remain to be investigated. Most chapters comprise summaries of work spanning decades and contain expert commentary available nowhere else. Although energetic materials are its focus, this book provides a guide to modern methods for investigations of condensed and gas-phase reactions. Although these energetic reactions are complex and difficult to study, the work discussed here provides readers with a substantial understanding of the behavior of materials now in use, and a predictive capability for the development of new materials based on target properties.
Author | : Nir Goldman |
Publisher | : Springer |
Total Pages | : 297 |
Release | : 2019-02-18 |
Genre | : Science |
ISBN | : 3030056007 |
This book presents recently developed computational approaches for the study of reactive materials under extreme physical and thermodynamic conditions. It delves into cutting edge developments in simulation methods for reactive materials, including quantum calculations spanning nanometer length scales and picosecond timescales, to reactive force fields, coarse-grained approaches, and machine learning methods spanning microns and nanoseconds and beyond. These methods are discussed in the context of a broad range of fields, including prebiotic chemistry in impacting comets, studies of planetary interiors, high pressure synthesis of new compounds, and detonations of energetic materials. The book presents a pedagogical approach for these state-of-the-art approaches, compiled into a single source for the first time. Ultimately, the volume aims to make valuable research tools accessible to experimentalists and theoreticians alike for any number of scientific efforts, spanning many different types of compounds and reactive conditions.
Author | : A. K. Tyagi |
Publisher | : Elsevier |
Total Pages | : 872 |
Release | : 2017-01-13 |
Genre | : Technology & Engineering |
ISBN | : 0128014423 |
Materials Under Extreme Conditions: Recent Trends and Future Prospects analyzes the chemical transformation and decomposition of materials exposed to extreme conditions, such as high temperature, high pressure, hostile chemical environments, high radiation fields, high vacuum, high magnetic and electric fields, wear and abrasion related to chemical bonding, special crystallographic features, and microstructures. The materials covered in this work encompass oxides, non-oxides, alloys and intermetallics, glasses, and carbon-based materials. The book is written for researchers in academia and industry, and technologists in chemical engineering, materials chemistry, chemistry, and condensed matter physics. - Describes and analyzes the chemical transformation and decomposition of a wide range of materials exposed to extreme conditions - Brings together information currently scattered across the Internet or incoherently dispersed amongst journals and proceedings - Presents chapters on phenomena, materials synthesis, and processing, characterization and properties, and applications - Written by established researchers in the field
Author | : Neil Bourne |
Publisher | : Cambridge University Press |
Total Pages | : 541 |
Release | : 2013-05-09 |
Genre | : Science |
ISBN | : 1107023750 |
This book explores the underlying principles of materials under extreme pressures, providing a toolbox for assessing/predicting their behaviour in real-world applications.
Author | : Rainer A. Dressler |
Publisher | : World Scientific |
Total Pages | : 644 |
Release | : 2001 |
Genre | : Science |
ISBN | : 9789812811882 |
As computing power increases, a growing number of macroscopic phenomena are modeled at the molecular level. Consequently, new requirements are generated for the understanding of molecular dynamics in exotic conditions. This book illustrates the importance of detailed chemical dynamics and the role it plays in the phenomenology of a number of extreme environments. Each chapter addresses one or more extreme environments, outlines the associated chemical mechanisms of relevance, and then covers the leading edge science that elucidates the chemical coupling. The chapters exhibit a balance between theory and experiment, gas phase, solid state, and surface dynamics, and geophysical and technical environments. Sample Chapter(s). Chapter 1.1: Introduction (203 KB). Chapter 1.2: Chemistry at High Temperatures and Pressures (99 KB). Chapter 1.3: High Temperature Chemistry in the Atmosphere (82 KB). Chapter 1.4: Low Temperature Chemistry (90 KB). Chapter 1.5: Conclusions (131 KB). Contents: Exploring Chemistry in Extreme Environments: A Driving Force for Innovation (M R Berman); Chemistry Under Extreme Conditions: Cluster Impact Activation (T Raz & R D Levine); Nonequilibrium Chemistry Modeling in Rarefied Hypersonic Flows (I D Boyd); Chemical Dynamics in Chemical Laser Media (M C Heaven); From Elementary Reactions to Complex Combustion Systems (C Schulz et al.); The Gas-Phase Chemical Dynamics Associated with Meteors (R A Dressler & E Murad); Dynamics of Hypervelocity Gas/Surface Collisions (D C Jacobs); Surface Chemistry in the Jovian Magnetosphere Radiation Environment (R E Johnson); Dynamics of Atomic Oxygen Induced Polymer Degradation in Low Earth Orbit (T K Minton & D J Garton); Atomic-Level Properties of Thermal Barrier Coatings: Characterization of MetalOCoCeramic Interface (A Christensen et al.); Molecular Dynamics Simulations of Detonations (C T White et al.). Readership: Scientists engaged in cross-disciplinary work and chemists studying multidisciplinary problems."
Author | : Mohammad Hossein Keshavarz |
Publisher | : Walter de Gruyter GmbH & Co KG |
Total Pages | : 143 |
Release | : 2020-05-05 |
Genre | : Technology & Engineering |
ISBN | : 311067775X |
This book discusses methods for the assessment of energetic compounds through heat of detonation, detonation pressure, velocity and temperature, Gurney energy and power. The authors focus on the detonation pressure and detonation velocity of non-ideal aluminized energetic compounds. This 2nd Edition includes an updated and improved presentation of simple, reliable methods for the design, synthesis and development of novel energetic compounds.
Author | : John R. Sabin |
Publisher | : Academic Press |
Total Pages | : 357 |
Release | : 2014-02-10 |
Genre | : Science |
ISBN | : 0128004509 |
Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine. - This volume presents a series of articles concerning current important topics in quantum chemistry. The invited articles are written by the best people in the field
Author | : Luigi T. De Luca |
Publisher | : Springer |
Total Pages | : 1069 |
Release | : 2016-08-19 |
Genre | : Technology & Engineering |
ISBN | : 3319277480 |
Developed and expanded from the work presented at the New Energetic Materials and Propulsion Techniques for Space Exploration workshop in June 2014, this book contains new scientific results, up-to-date reviews, and inspiring perspectives in a number of areas related to the energetic aspects of chemical rocket propulsion. This collection covers the entire life of energetic materials from their conceptual formulation to practical manufacturing; it includes coverage of theoretical and experimental ballistics, performance properties, as well as laboratory-scale and full system-scale, handling, hazards, environment, ageing, and disposal. Chemical Rocket Propulsion is a unique work, where a selection of accomplished experts from the pioneering era of space propulsion and current technologists from the most advanced international laboratories discuss the future of chemical rocket propulsion for access to, and exploration of, space. It will be of interest to both postgraduate and final-year undergraduate students in aerospace engineering, and practicing aeronautical engineers and designers, especially those with an interest in propulsion, as well as researchers in energetic materials.
Author | : Shantanu Bhattacharya |
Publisher | : Springer |
Total Pages | : 297 |
Release | : 2018-11-09 |
Genre | : Technology & Engineering |
ISBN | : 981133269X |
This book presents the latest research on the area of nano-energetic materials, their synthesis, fabrication, patterning, application and integration with various MEMS systems and platforms. Keeping in mind the applications for this field in aerospace and defense sectors, the articles in this volume contain contributions by leading researchers in the field, who discuss the current challenges and future perspectives. This volume will be of use to researchers working on various applications of high-energy research.