Empirical Likelihood Method in Survival Analysis

Empirical Likelihood Method in Survival Analysis
Author: Mai Zhou
Publisher: CRC Press
Total Pages: 221
Release: 2015-06-17
Genre: Mathematics
ISBN: 1466554932

Empirical Likelihood Method in Survival Analysis explains how to use the empirical likelihood method for right censored survival data. The author uses R for calculating empirical likelihood and includes many worked out examples with the associated R code. The datasets and code are available for download on his website and CRAN. The book focuses on all the standard survival analysis topics treated with empirical likelihood, including hazard functions, cumulative distribution functions, analysis of the Cox model, and computation of empirical likelihood for censored data. It also covers semi-parametric accelerated failure time models, the optimality of confidence regions derived from empirical likelihood or plug-in empirical likelihood ratio tests, and several empirical likelihood confidence band results. While survival analysis is a classic area of statistical study, the empirical likelihood methodology has only recently been developed. Until now, just one book was available on empirical likelihood and most statistical software did not include empirical likelihood procedures. Addressing this shortfall, this book provides the functions to calculate the empirical likelihood ratio in survival analysis as well as functions related to the empirical likelihood analysis of the Cox regression model and other hazard regression models.

Empirical Likelihood

Empirical Likelihood
Author: Art B. Owen
Publisher: CRC Press
Total Pages: 322
Release: 2001-05-18
Genre: Mathematics
ISBN: 1420036157

Empirical likelihood provides inferences whose validity does not depend on specifying a parametric model for the data. Because it uses a likelihood, the method has certain inherent advantages over resampling methods: it uses the data to determine the shape of the confidence regions, and it makes it easy to combined data from multiple sources. It al

Empirical Likelihood Methods in Biomedicine and Health

Empirical Likelihood Methods in Biomedicine and Health
Author: Albert Vexler
Publisher: CRC Press
Total Pages: 149
Release: 2018-09-03
Genre: Mathematics
ISBN: 1351001507

Empirical Likelihood Methods in Biomedicine and Health provides a compendium of nonparametric likelihood statistical techniques in the perspective of health research applications. It includes detailed descriptions of the theoretical underpinnings of recently developed empirical likelihood-based methods. The emphasis throughout is on the application of the methods to the health sciences, with worked examples using real data. Provides a systematic overview of novel empirical likelihood techniques. Presents a good balance of theory, methods, and applications. Features detailed worked examples to illustrate the application of the methods. Includes R code for implementation. The book material is attractive and easily understandable to scientists who are new to the research area and may attract statisticians interested in learning more about advanced nonparametric topics including various modern empirical likelihood methods. The book can be used by graduate students majoring in biostatistics, or in a related field, particularly for those who are interested in nonparametric methods with direct applications in Biomedicine.

Innovative Strategies, Statistical Solutions and Simulations for Modern Clinical Trials

Innovative Strategies, Statistical Solutions and Simulations for Modern Clinical Trials
Author: Mark Chang
Publisher: CRC Press
Total Pages: 255
Release: 2019-03-20
Genre: Mathematics
ISBN: 1351214527

"This is truly an outstanding book. [It] brings together all of the latest research in clinical trials methodology and how it can be applied to drug development.... Chang et al provide applications to industry-supported trials. This will allow statisticians in the industry community to take these methods seriously." Jay Herson, Johns Hopkins University The pharmaceutical industry's approach to drug discovery and development has rapidly transformed in the last decade from the more traditional Research and Development (R & D) approach to a more innovative approach in which strategies are employed to compress and optimize the clinical development plan and associated timelines. However, these strategies are generally being considered on an individual trial basis and not as part of a fully integrated overall development program. Such optimization at the trial level is somewhat near-sighted and does not ensure cost, time, or development efficiency of the overall program. This book seeks to address this imbalance by establishing a statistical framework for overall/global clinical development optimization and providing tactics and techniques to support such optimization, including clinical trial simulations. Provides a statistical framework for achieve global optimization in each phase of the drug development process. Describes specific techniques to support optimization including adaptive designs, precision medicine, survival-endpoints, dose finding and multiple testing. Gives practical approaches to handling missing data in clinical trials using SAS. Looks at key controversial issues from both a clinical and statistical perspective. Presents a generous number of case studies from multiple therapeutic areas that help motivate and illustrate the statistical methods introduced in the book. Puts great emphasis on software implementation of the statistical methods with multiple examples of software code (both SAS and R). It is important for statisticians to possess a deep knowledge of the drug development process beyond statistical considerations. For these reasons, this book incorporates both statistical and "clinical/medical" perspectives.

Survival Analysis Using S

Survival Analysis Using S
Author: Mara Tableman
Publisher: CRC Press
Total Pages: 277
Release: 2003-07-28
Genre: Mathematics
ISBN: 0203501411

Survival Analysis Using S: Analysis of Time-to-Event Data is designed as a text for a one-semester or one-quarter course in survival analysis for upper-level or graduate students in statistics, biostatistics, and epidemiology. Prerequisites are a standard pre-calculus first course in probability and statistics, and a course in applied linear regression models. No prior knowledge of S or R is assumed. A wide choice of exercises is included, some intended for more advanced students with a first course in mathematical statistics. The authors emphasize parametric log-linear models, while also detailing nonparametric procedures along with model building and data diagnostics. Medical and public health researchers will find the discussion of cut point analysis with bootstrap validation, competing risks and the cumulative incidence estimator, and the analysis of left-truncated and right-censored data invaluable. The bootstrap procedure checks robustness of cut point analysis and determines cut point(s). In a chapter written by Stephen Portnoy, censored regression quantiles - a new nonparametric regression methodology (2003) - is developed to identify important forms of population heterogeneity and to detect departures from traditional Cox models. By generalizing the Kaplan-Meier estimator to regression models for conditional quantiles, this methods provides a valuable complement to traditional Cox proportional hazards approaches.

Advanced Survival Models

Advanced Survival Models
Author: Catherine Legrand
Publisher: CRC Press
Total Pages: 361
Release: 2021-03-22
Genre: Mathematics
ISBN: 0429622554

Survival data analysis is a very broad field of statistics, encompassing a large variety of methods used in a wide range of applications, and in particular in medical research. During the last twenty years, several extensions of "classical" survival models have been developed to address particular situations often encountered in practice. This book aims to gather in a single reference the most commonly used extensions, such as frailty models (in case of unobserved heterogeneity or clustered data), cure models (when a fraction of the population will not experience the event of interest), competing risk models (in case of different types of event), and joint survival models for a time-to-event endpoint and a longitudinal outcome. Features Presents state-of-the art approaches for different advanced survival models including frailty models, cure models, competing risk models and joint models for a longitudinal and a survival outcome Uses consistent notation throughout the book for the different techniques presented Explains in which situation each of these models should be used, and how they are linked to specific research questions Focuses on the understanding of the models, their implementation, and their interpretation, with an appropriate level of methodological development for masters students and applied statisticians Provides references to existing R packages and SAS procedure or macros, and illustrates the use of the main ones on real datasets This book is primarily aimed at applied statisticians and graduate students of statistics and biostatistics. It can also serve as an introductory reference for methodological researchers interested in the main extensions of classical survival analysis.

Counting Processes and Survival Analysis

Counting Processes and Survival Analysis
Author: Thomas R. Fleming
Publisher: John Wiley & Sons
Total Pages: 454
Release: 2011-09-20
Genre: Mathematics
ISBN: 111815066X

The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "The book is a valuable completion of the literature in this field. It is written in an ambitious mathematical style and can be recommended to statisticians as well as biostatisticians." -Biometrische Zeitschrift "Not many books manage to combine convincingly topics from probability theory over mathematical statistics to applied statistics. This is one of them. The book has other strong points to recommend it: it is written with meticulous care, in a lucid style, general results being illustrated by examples from statistical theory and practice, and a bunch of exercises serve to further elucidate and elaborate on the text." -Mathematical Reviews "This book gives a thorough introduction to martingale and counting process methods in survival analysis thereby filling a gap in the literature." -Zentralblatt für Mathematik und ihre Grenzgebiete/Mathematics Abstracts "The authors have performed a valuable service to researchers in providing this material in [a] self-contained and accessible form. . . This text [is] essential reading for the probabilist or mathematical statistician working in the area of survival analysis." -Short Book Reviews, International Statistical Institute Counting Processes and Survival Analysis explores the martingale approach to the statistical analysis of counting processes, with an emphasis on the application of those methods to censored failure time data. This approach has proven remarkably successful in yielding results about statistical methods for many problems arising in censored data. A thorough treatment of the calculus of martingales as well as the most important applications of these methods to censored data is offered. Additionally, the book examines classical problems in asymptotic distribution theory for counting process methods and newer methods for graphical analysis and diagnostics of censored data. Exercises are included to provide practice in applying martingale methods and insight into the calculus itself.

The Frailty Model

The Frailty Model
Author: Luc Duchateau
Publisher: Springer Science & Business Media
Total Pages: 329
Release: 2007-10-23
Genre: Mathematics
ISBN: 038772835X

Readers will find in the pages of this book a treatment of the statistical analysis of clustered survival data. Such data are encountered in many scientific disciplines including human and veterinary medicine, biology, epidemiology, public health and demography. A typical example is the time to death in cancer patients, with patients clustered in hospitals. Frailty models provide a powerful tool to analyze clustered survival data. In this book different methods based on the frailty model are described and it is demonstrated how they can be used to analyze clustered survival data. All programs used for these examples are available on the Springer website.

Introduction to Empirical Processes and Semiparametric Inference

Introduction to Empirical Processes and Semiparametric Inference
Author: Michael R. Kosorok
Publisher: Springer Science & Business Media
Total Pages: 482
Release: 2007-12-29
Genre: Mathematics
ISBN: 0387749780

Kosorok’s brilliant text provides a self-contained introduction to empirical processes and semiparametric inference. These powerful research techniques are surprisingly useful for developing methods of statistical inference for complex models and in understanding the properties of such methods. This is an authoritative text that covers all the bases, and also a friendly and gradual introduction to the area. The book can be used as research reference and textbook.