Elliptic Boundary Value Problems in Domains with Point Singularities

Elliptic Boundary Value Problems in Domains with Point Singularities
Author: Vladimir Kozlov
Publisher: American Mathematical Soc.
Total Pages: 426
Release: 1997
Genre: Mathematics
ISBN: 0821807544

For graduate students and research mathematicians interested in partial differential equations and who have a basic knowledge of functional analysis. Restricted to boundary value problems formed by differential operators, avoiding the use of pseudo- differential operators. Concentrates on fundamental results such as estimates for solutions in different function spaces, the Fredholm property of the problem's operator, regularity assertions, and asymptotic formulas for the solutions of near singular points. Considers the solutions in Sobolev spaces of both positive and negative orders. Annotation copyrighted by Book News, Inc., Portland, OR

Functional Spaces for the Theory of Elliptic Partial Differential Equations

Functional Spaces for the Theory of Elliptic Partial Differential Equations
Author: Françoise Demengel
Publisher: Springer Science & Business Media
Total Pages: 480
Release: 2012-01-24
Genre: Mathematics
ISBN: 1447128079

The theory of elliptic boundary problems is fundamental in analysis and the role of spaces of weakly differentiable functions (also called Sobolev spaces) is essential in this theory as a tool for analysing the regularity of the solutions. This book offers on the one hand a complete theory of Sobolev spaces, which are of fundamental importance for elliptic linear and non-linear differential equations, and explains on the other hand how the abstract methods of convex analysis can be combined with this theory to produce existence results for the solutions of non-linear elliptic boundary problems. The book also considers other kinds of functional spaces which are useful for treating variational problems such as the minimal surface problem. The main purpose of the book is to provide a tool for graduate and postgraduate students interested in partial differential equations, as well as a useful reference for researchers active in the field. Prerequisites include a knowledge of classical analysis, differential calculus, Banach and Hilbert spaces, integration and the related standard functional spaces, as well as the Fourier transformation on the Schwartz space. There are complete and detailed proofs of almost all the results announced and, in some cases, more than one proof is provided in order to highlight different features of the result. Each chapter concludes with a range of exercises of varying levels of difficulty, with hints to solutions provided for many of them.

Boundary Value Problems for Elliptic Systems

Boundary Value Problems for Elliptic Systems
Author: J. T. Wloka
Publisher: Cambridge University Press
Total Pages: 659
Release: 1995-07-28
Genre: Mathematics
ISBN: 0521430119

The theory of boundary value problems for elliptic systems of partial differential equations has many applications in mathematics and the physical sciences. The aim of this book is to "algebraize" the index theory by means of pseudo-differential operators and new methods in the spectral theory of matrix polynomials. This latter theory provides important tools that will enable the student to work efficiently with the principal symbols of the elliptic and boundary operators on the boundary. Because many new methods and results are introduced and used throughout the book, all the theorems are proved in detail, and the methods are well illustrated through numerous examples and exercises. This book is ideal for use in graduate level courses on partial differential equations, elliptic systems, pseudo-differential operators, and matrix analysis.

Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains

Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains
Author: Vladimir Maz'ya
Publisher: Birkhäuser
Total Pages: 448
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034884346

For the first time in the mathematical literature, this two-volume work introduces a unified and general approach to the subject. To a large extent, the book is based on the authors’ work, and has no significant overlap with other books on the theory of elliptic boundary value problems.

Lectures on Elliptic Boundary Value Problems

Lectures on Elliptic Boundary Value Problems
Author: Shmuel Agmon
Publisher: American Mathematical Soc.
Total Pages: 225
Release: 2010-02-03
Genre: Mathematics
ISBN: 0821849107

This book, which is a new edition of a book originally published in 1965, presents an introduction to the theory of higher-order elliptic boundary value problems. The book contains a detailed study of basic problems of the theory, such as the problem of existence and regularity of solutions of higher-order elliptic boundary value problems. It also contains a study of spectral properties of operators associated with elliptic boundary value problems. Weyl's law on the asymptotic distribution of eigenvalues is studied in great generality.

Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II

Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume II
Author: Vladimir Maz'ya
Publisher: Birkhäuser
Total Pages: 336
Release: 2012-12-06
Genre: Mathematics
ISBN: 303488432X

For the first time in the mathematical literature, this two-volume work introduces a unified and general approach to the subject. To a large extent, the book is based on the authors’ work, and has no significant overlap with other books on the theory of elliptic boundary value problems

Distributions

Distributions
Author: Pulin Kumar Bhattacharyya
Publisher: Walter de Gruyter
Total Pages: 871
Release: 2012-05-29
Genre: Mathematics
ISBN: 3110269295

This book grew out of a course taught in the Department of Mathematics, Indian Institute of Technology, Delhi, which was tailored to the needs of the applied community of mathematicians, engineers, physicists etc., who were interested in studying the problems of mathematical physics in general and their approximate solutions on computer in particular. Almost all topics which will be essential for the study of Sobolev spaces and their applications in the elliptic boundary value problems and their finite element approximations are presented. Also many additional topics of interests for specific applied disciplines and engineering, for example, elementary solutions, derivatives of discontinuous functions of several variables, delta-convergent sequences of functions, Fourier series of distributions, convolution system of equations etc. have been included along with many interesting examples.

Elliptic Boundary Value Problems in the Spaces of Distributions

Elliptic Boundary Value Problems in the Spaces of Distributions
Author: Y. Roitberg
Publisher: Springer Science & Business Media
Total Pages: 424
Release: 2012-12-06
Genre: Mathematics
ISBN: 9401154104

This volume endeavours to summarise all available data on the theorems on isomorphisms and their ever increasing number of possible applications. It deals with the theory of solvability in generalised functions of general boundary-value problems for elliptic equations. In the early sixties, Lions and Magenes, and Berezansky, Krein and Roitberg established the theorems on complete collection of isomorphisms. Further progress of the theory was connected with proving the theorem on complete collection of isomorphisms for new classes of problems, and hence with the development of new methods to prove these theorems. The theorems on isomorphisms were first established for elliptic equations with normal boundary conditions. However, after the Noetherian property of elliptic problems was proved without assuming the normality of the boundary expressions, this became the natural way to consider the problems of establishing the theorems on isomorphisms for general elliptic problems. The present author's method of solving this problem enabled proof of the theorem on complete collection of isomorphisms for the operators generated by elliptic boundary-value problems for general systems of equations. Audience: This monograph will be of interest to mathematicians whose work involves partial differential equations, functional analysis, operator theory and the mathematics of mechanics.

Distributions, Sobolev Spaces, Elliptic Equations

Distributions, Sobolev Spaces, Elliptic Equations
Author: Dorothee Haroske
Publisher: European Mathematical Society
Total Pages: 312
Release: 2007
Genre: Mathematics
ISBN: 9783037190425

It is the main aim of this book to develop at an accessible, moderate level an $L_2$ theory for elliptic differential operators of second order on bounded smooth domains in Euclidean n-space, including a priori estimates for boundary-value problems in terms of (fractional) Sobolev spaces on domains and on their boundaries, together with a related spectral theory. The presentation is preceded by an introduction to the classical theory for the Laplace-Poisson equation, and some chapters provide required ingredients such as the theory of distributions, Sobolev spaces and the spectral theory in Hilbert spaces. The book grew out of two-semester courses the authors have given several times over a period of ten years at the Friedrich Schiller University of Jena. It is addressed to graduate students and mathematicians who have a working knowledge of calculus, measure theory and the basic elements of functional analysis (as usually covered by undergraduate courses) and who are seeking an accessible introduction to some aspects of the theory of function spaces and its applications to elliptic equations.