Elements of Sequential Monte Carlo

Elements of Sequential Monte Carlo
Author: Christian A. Naesseth
Publisher:
Total Pages: 134
Release: 2019-11-12
Genre: Computers
ISBN: 9781680836325

Written in a tutorial style, this monograph introduces the basics of Sequential Monte Carlo, discusses practical issues, and reviews theoretical results before guiding the reader through a series of advanced topics to give a complete overview of the topic and its application to machine learning problems.

Sequential Monte Carlo Methods in Practice

Sequential Monte Carlo Methods in Practice
Author: Arnaud Doucet
Publisher: Springer Science & Business Media
Total Pages: 590
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475734379

Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.

Introducing Monte Carlo Methods with R

Introducing Monte Carlo Methods with R
Author: Christian Robert
Publisher: Springer Science & Business Media
Total Pages: 297
Release: 2010
Genre: Computers
ISBN: 1441915753

This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.

An Introduction to Sequential Monte Carlo

An Introduction to Sequential Monte Carlo
Author: Nicolas Chopin
Publisher: Springer Nature
Total Pages: 378
Release: 2020-10-01
Genre: Mathematics
ISBN: 3030478459

This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.

Random Finite Sets for Robot Mapping & SLAM

Random Finite Sets for Robot Mapping & SLAM
Author: John Stephen Mullane
Publisher: Springer Science & Business Media
Total Pages: 161
Release: 2011-05-19
Genre: Technology & Engineering
ISBN: 3642213898

The monograph written by John Mullane, Ba-Ngu Vo, Martin Adams and Ba-Tuong Vo is devoted to the field of autonomous robot systems, which have been receiving a great deal of attention by the research community in the latest few years. The contents are focused on the problem of representing the environment and its uncertainty in terms of feature based maps. Random Finite Sets are adopted as the fundamental tool to represent a map, and a general framework is proposed for feature management, data association and state estimation. The approaches are tested in a number of experiments on both ground based and marine based facilities.

Monte Carlo Strategies in Scientific Computing

Monte Carlo Strategies in Scientific Computing
Author: Jun S. Liu
Publisher: Springer Science & Business Media
Total Pages: 350
Release: 2013-11-11
Genre: Mathematics
ISBN: 0387763716

This book provides a self-contained and up-to-date treatment of the Monte Carlo method and develops a common framework under which various Monte Carlo techniques can be "standardized" and compared. Given the interdisciplinary nature of the topics and a moderate prerequisite for the reader, this book should be of interest to a broad audience of quantitative researchers such as computational biologists, computer scientists, econometricians, engineers, probabilists, and statisticians. It can also be used as a textbook for a graduate-level course on Monte Carlo methods.

A Guide to Monte Carlo Simulations in Statistical Physics

A Guide to Monte Carlo Simulations in Statistical Physics
Author: David P. Landau
Publisher: Cambridge University Press
Total Pages: 456
Release: 2005-09
Genre: Computers
ISBN: 9780521842389

This updated edition deals with the Monte Carlo simulation of complex physical systems encountered in condensed-matter physics, statistical mechanics, and related fields. It contains many applications, examples, and exercises to help the reader. It is an excellent guide for graduate students and researchers who use computer simulations in their research.

Monte Carlo Methods

Monte Carlo Methods
Author: Adrian Barbu
Publisher: Springer Nature
Total Pages: 433
Release: 2020-02-24
Genre: Mathematics
ISBN: 9811329710

This book seeks to bridge the gap between statistics and computer science. It provides an overview of Monte Carlo methods, including Sequential Monte Carlo, Markov Chain Monte Carlo, Metropolis-Hastings, Gibbs Sampler, Cluster Sampling, Data Driven MCMC, Stochastic Gradient descent, Langevin Monte Carlo, Hamiltonian Monte Carlo, and energy landscape mapping. Due to its comprehensive nature, the book is suitable for developing and teaching graduate courses on Monte Carlo methods. To facilitate learning, each chapter includes several representative application examples from various fields. The book pursues two main goals: (1) It introduces researchers to applying Monte Carlo methods to broader problems in areas such as Computer Vision, Computer Graphics, Machine Learning, Robotics, Artificial Intelligence, etc.; and (2) it makes it easier for scientists and engineers working in these areas to employ Monte Carlo methods to enhance their research.

Inference in Hidden Markov Models

Inference in Hidden Markov Models
Author: Olivier Cappé
Publisher: Springer Science & Business Media
Total Pages: 656
Release: 2006-04-12
Genre: Mathematics
ISBN: 0387289828

This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.

Handbook of Monte Carlo Methods

Handbook of Monte Carlo Methods
Author: Dirk P. Kroese
Publisher: John Wiley & Sons
Total Pages: 627
Release: 2013-06-06
Genre: Mathematics
ISBN: 1118014952

A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.