A Vector Space Approach to Geometry

A Vector Space Approach to Geometry
Author: Melvin Hausner
Publisher: Courier Dover Publications
Total Pages: 417
Release: 2018-10-17
Genre: Mathematics
ISBN: 0486835391

A fascinating exploration of the correlation between geometry and linear algebra, this text also offers elementary explanations of the role of geometry in other branches of math and science. 1965 edition.

Euclid

Euclid
Author: Shoo Rayner
Publisher:
Total Pages: 54
Release: 2017-11-02
Genre: Juvenile Nonfiction
ISBN: 9781908944368

Geometry is brought to life as Euclid explains principles of Geometry to his friends. With jokes and lots of illustrations, discover the beauty of geometry and, before you know it, you too will soon be a friend of Euclid! Shoo Rayner adds humour and simplicity to a tricky subject. A perfect introduction.

Euclid's Elements of Geometry

Euclid's Elements of Geometry
Author: Euclid
Publisher:
Total Pages: 546
Release: 2008
Genre:
ISBN:

EUCLID'S ELEMENTS OF GEOMETRY, in Greek and English. The Greek text of J.L. Heiberg (1883-1885), edited, and provided with a modern English translation, by Richard Fitzpatrick.[Description from Wikipedia: ] The Elements (Ancient Greek: Στοιχεῖον Stoikheîon) is a mathematical treatise consisting of 13 books (all included in this volume) attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover plane and solid Euclidean geometry, elementary number theory, and incommensurable lines. Elements is the oldest extant large-scale deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science, and its logical rigor was not surpassed until the 19th century.

Euclid's Elements

Euclid's Elements
Author: Euclid
Publisher:
Total Pages: 544
Release: 2002
Genre: Mathematics
ISBN:

"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.

Conceptual Spaces

Conceptual Spaces
Author: Peter Gardenfors
Publisher: MIT Press
Total Pages: 324
Release: 2004-01-30
Genre: Psychology
ISBN: 9780262572194

Within cognitive science, two approaches currently dominate the problem of modeling representations. The symbolic approach views cognition as computation involving symbolic manipulation. Connectionism, a special case of associationism, models associations using artificial neuron networks. Peter Gärdenfors offers his theory of conceptual representations as a bridge between the symbolic and connectionist approaches. Symbolic representation is particularly weak at modeling concept learning, which is paramount for understanding many cognitive phenomena. Concept learning is closely tied to the notion of similarity, which is also poorly served by the symbolic approach. Gärdenfors's theory of conceptual spaces presents a framework for representing information on the conceptual level. A conceptual space is built up from geometrical structures based on a number of quality dimensions. The main applications of the theory are on the constructive side of cognitive science: as a constructive model the theory can be applied to the development of artificial systems capable of solving cognitive tasks. Gärdenfors also shows how conceptual spaces can serve as an explanatory framework for a number of empirical theories, in particular those concerning concept formation, induction, and semantics. His aim is to present a coherent research program that can be used as a basis for more detailed investigations.

Designing Learning Environments for Developing Understanding of Geometry and Space

Designing Learning Environments for Developing Understanding of Geometry and Space
Author: Richard Lehrer
Publisher: Routledge
Total Pages: 520
Release: 1998
Genre: Education
ISBN: 0805819487

This volume reflects an appreciation of the interactive roles of subject matter, teacher, student, and technologies in designing classrooms that promote understanding of geometry and space. Although these elements of geometry education are mutually constituted, the book is organized to highlight, first, the editors' vision of a general geometry education; second, the development of student thinking in everyday and classroom contexts; and third, the role of technologies. Rather than looking to high school geometry as the locus--and all too often, the apex--of geometric reasoning, the contributors to this volume suggest that reasoning about space can and should be successfully integrated with other forms of mathematics, starting at the elementary level and continuing through high school. Reintegrating spatial reasoning into the mathematical mainstream--indeed, placing it at the core of K-12 mathematics environments that promote learning with understanding--will mean increased attention to problems in modeling, structure, and design and reinvigoration of traditional topics such as measure, dimension, and form. Further, the editors' position is that the teaching of geometry and spatial visualization in school should not be compressed into a characterization of Greek geometry, but should include attention to contributions to the mathematics of space that developed subsequent to those of the Greeks. This volume is essential reading for those involved in mathematics education at all levels, including university faculty, researchers, and graduate students.

Space, Geometry, and Kant's Transcendental Deduction of the Categories

Space, Geometry, and Kant's Transcendental Deduction of the Categories
Author: Thomas C. Vinci
Publisher:
Total Pages: 265
Release: 2015
Genre: Philosophy
ISBN: 019938116X

Thomas C. Vinci aims to reveal and assess the structure of Kant's argument in the Critique of Pure Reason called the "Transcendental Deduction of the Categories." At the end of the first part of the Deduction in the B-edition Kant states that his purpose is achieved: to show that all intuitions in general are subject to the categories. On the standard reading, this means that all of our mental representations, including those originating in sense-experience, are structured by conceptualization. But this reading encounters an exegetical problem: Kant states in the second part of the Deduction that a major part of what remains to be shown is that empirical intuitions are subject to the categories. How can this be if it has already been shown that intuitions in general are subject to the categories? Vinci calls this the Triviality Problem, and he argues that solving it requires denying the standard reading. In its place he proposes that intuitions in general and empirical intuitions constitute disjoint classes and that, while all intuitions for Kant are unified, there are two kinds of unification: logical unification vs. aesthetic unification. Only the former is due to the categories. A second major theme of the book is that Kant's Idealism comes in two versions-for laws of nature and for objects of empirical intuition-and that demonstrating these versions is the ultimate goal of the Deduction of the Categories and the similarly structured Deduction of the Concepts of Space, respectively. Vinci shows that the Deductions have the argument structure of an inference to the best explanation for correlated domains of explananda, each arrived at by independent applications of Kantian epistemic and geometrical methods.

The Foundations of Geometry

The Foundations of Geometry
Author: David Hilbert
Publisher: Read Books Ltd
Total Pages: 139
Release: 2015-05-06
Genre: History
ISBN: 1473395941

This early work by David Hilbert was originally published in the early 20th century and we are now republishing it with a brand new introductory biography. David Hilbert was born on the 23rd January 1862, in a Province of Prussia. Hilbert is recognised as one of the most influential and universal mathematicians of the 19th and early 20th centuries. He discovered and developed a broad range of fundamental ideas in many areas, including invariant theory and the axiomatization of geometry. He also formulated the theory of Hilbert spaces, one of the foundations of functional analysis.

Geometry and Meaning

Geometry and Meaning
Author: Dominic Widdows
Publisher: Stanford Univ Center for the Study
Total Pages: 319
Release: 2004
Genre: Mathematics
ISBN: 9781575864471

Geometric models similar to those of Pythagoras and Einstein are now being applied to the conceptual space of information and meaning, for example in the arrangement of Internet documents. This text explores the computational techniques necessary to represent meaning and their basis in conceptual space.