Elementary Theory Of Numbers Classic Reprint
Download Elementary Theory Of Numbers Classic Reprint full books in PDF, epub, and Kindle. Read online free Elementary Theory Of Numbers Classic Reprint ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Underwood Dudley |
Publisher | : Courier Corporation |
Total Pages | : 274 |
Release | : 2012-06-04 |
Genre | : Mathematics |
ISBN | : 0486134873 |
Written in a lively, engaging style by the author of popular mathematics books, this volume features nearly 1,000 imaginative exercises and problems. Some solutions included. 1978 edition.
Author | : Edmund Landau |
Publisher | : American Mathematical Society |
Total Pages | : 256 |
Release | : 2021-02-22 |
Genre | : Mathematics |
ISBN | : 1470463253 |
This three-volume classic work is reprinted here as a single volume.
Author | : Marty Lewinter |
Publisher | : John Wiley & Sons |
Total Pages | : 240 |
Release | : 2015-06-02 |
Genre | : Mathematics |
ISBN | : 1119062764 |
A highly successful presentation of the fundamental concepts of number theory and computer programming Bridging an existing gap between mathematics and programming, Elementary Number Theory with Programming provides a unique introduction to elementary number theory with fundamental coverage of computer programming. Written by highly-qualified experts in the fields of computer science and mathematics, the book features accessible coverage for readers with various levels of experience and explores number theory in the context of programming without relying on advanced prerequisite knowledge and concepts in either area. Elementary Number Theory with Programming features comprehensive coverage of the methodology and applications of the most well-known theorems, problems, and concepts in number theory. Using standard mathematical applications within the programming field, the book presents modular arithmetic and prime decomposition, which are the basis of the public-private key system of cryptography. In addition, the book includes: Numerous examples, exercises, and research challenges in each chapter to encourage readers to work through the discussed concepts and ideas Select solutions to the chapter exercises in an appendix Plentiful sample computer programs to aid comprehension of the presented material for readers who have either never done any programming or need to improve their existing skill set A related website with links to select exercises An Instructor’s Solutions Manual available on a companion website Elementary Number Theory with Programming is a useful textbook for undergraduate and graduate-level students majoring in mathematics or computer science, as well as an excellent supplement for teachers and students who would like to better understand and appreciate number theory and computer programming. The book is also an ideal reference for computer scientists, programmers, and researchers interested in the mathematical applications of programming.
Author | : James S. Kraft |
Publisher | : CRC Press |
Total Pages | : 412 |
Release | : 2014-11-24 |
Genre | : Mathematics |
ISBN | : 1498702686 |
Elementary Number Theory takes an accessible approach to teaching students about the role of number theory in pure mathematics and its important applications to cryptography and other areas. The first chapter of the book explains how to do proofs and includes a brief discussion of lemmas, propositions, theorems, and corollaries. The core of the text covers linear Diophantine equations; unique factorization; congruences; Fermat’s, Euler’s, and Wilson’s theorems; order and primitive roots; and quadratic reciprocity. The authors also discuss numerous cryptographic topics, such as RSA and discrete logarithms, along with recent developments. The book offers many pedagogical features. The "check your understanding" problems scattered throughout the chapters assess whether students have learned essential information. At the end of every chapter, exercises reinforce an understanding of the material. Other exercises introduce new and interesting ideas while computer exercises reflect the kinds of explorations that number theorists often carry out in their research.
Author | : Ethan D. Bolker |
Publisher | : Courier Corporation |
Total Pages | : 208 |
Release | : 2012-06-14 |
Genre | : Mathematics |
ISBN | : 0486153096 |
This text uses the concepts usually taught in the first semester of a modern abstract algebra course to illuminate classical number theory: theorems on primitive roots, quadratic Diophantine equations, and more.
Author | : K. Ireland |
Publisher | : Springer Science & Business Media |
Total Pages | : 355 |
Release | : 2013-03-09 |
Genre | : Mathematics |
ISBN | : 1475717792 |
This book is a revised and greatly expanded version of our book Elements of Number Theory published in 1972. As with the first book the primary audience we envisage consists of upper level undergraduate mathematics majors and graduate students. We have assumed some familiarity with the material in a standard undergraduate course in abstract algebra. A large portion of Chapters 1-11 can be read even without such background with the aid of a small amount of supplementary reading. The later chapters assume some knowledge of Galois theory, and in Chapters 16 and 18 an acquaintance with the theory of complex variables is necessary. Number theory is an ancient subject and its content is vast. Any intro ductory book must, of necessity, make a very limited selection from the fascinat ing array of possible topics. Our focus is on topics which point in the direction of algebraic number theory and arithmetic algebraic geometry. By a careful selection of subject matter we have found it possible to exposit some rather advanced material without requiring very much in the way oftechnical background. Most of this material is classical in the sense that is was dis covered during the nineteenth century and earlier, but it is also modern because it is intimately related to important research going on at the present time.
Author | : Oystein Ore |
Publisher | : Courier Corporation |
Total Pages | : 404 |
Release | : 2012-07-06 |
Genre | : Mathematics |
ISBN | : 0486136434 |
Unusually clear, accessible introduction covers counting, properties of numbers, prime numbers, Aliquot parts, Diophantine problems, congruences, much more. Bibliography.
Author | : Melvyn B. Nathanson |
Publisher | : Springer Science & Business Media |
Total Pages | : 518 |
Release | : 2008-01-11 |
Genre | : Mathematics |
ISBN | : 0387227385 |
This basic introduction to number theory is ideal for those with no previous knowledge of the subject. The main topics of divisibility, congruences, and the distribution of prime numbers are covered. Of particular interest is the inclusion of a proof for one of the most famous results in mathematics, the prime number theorem. With many examples and exercises, and only requiring knowledge of a little calculus and algebra, this book will suit individuals with imagination and interest in following a mathematical argument to its conclusion.
Author | : William Stein |
Publisher | : Springer Science & Business Media |
Total Pages | : 173 |
Release | : 2008-10-28 |
Genre | : Mathematics |
ISBN | : 0387855254 |
This is a book about prime numbers, congruences, secret messages, and elliptic curves that you can read cover to cover. It grew out of undergr- uate courses that the author taught at Harvard, UC San Diego, and the University of Washington. The systematic study of number theory was initiated around 300B. C. when Euclid proved that there are in?nitely many prime numbers, and also cleverly deduced the fundamental theorem of arithmetic, which asserts that every positive integer factors uniquely as a product of primes. Over a thousand years later (around 972A. D. ) Arab mathematicians formulated the congruent number problem that asks for a way to decide whether or not a given positive integer n is the area of a right triangle, all three of whose sides are rational numbers. Then another thousand years later (in 1976), Di?e and Hellman introduced the ?rst ever public-key cryptosystem, which enabled two people to communicate secretely over a public communications channel with no predetermined secret; this invention and the ones that followed it revolutionized the world of digital communication. In the 1980s and 1990s, elliptic curves revolutionized number theory, providing striking new insights into the congruent number problem, primality testing, publ- key cryptography, attacks on public-key systems, and playing a central role in Andrew Wiles’ resolution of Fermat’s Last Theorem.
Author | : Benjamin Fine |
Publisher | : Birkhäuser |
Total Pages | : 423 |
Release | : 2016-09-19 |
Genre | : Mathematics |
ISBN | : 3319438751 |
Now in its second edition, this textbook provides an introduction and overview of number theory based on the density and properties of the prime numbers. This unique approach offers both a firm background in the standard material of number theory, as well as an overview of the entire discipline. All of the essential topics are covered, such as the fundamental theorem of arithmetic, theory of congruences, quadratic reciprocity, arithmetic functions, and the distribution of primes. New in this edition are coverage of p-adic numbers, Hensel's lemma, multiple zeta-values, and elliptic curve methods in primality testing. Key topics and features include: A solid introduction to analytic number theory, including full proofs of Dirichlet's Theorem and the Prime Number Theorem Concise treatment of algebraic number theory, including a complete presentation of primes, prime factorizations in algebraic number fields, and unique factorization of ideals Discussion of the AKS algorithm, which shows that primality testing is one of polynomial time, a topic not usually included in such texts Many interesting ancillary topics, such as primality testing and cryptography, Fermat and Mersenne numbers, and Carmichael numbers The user-friendly style, historical context, and wide range of exercises that range from simple to quite difficult (with solutions and hints provided for select exercises) make Number Theory: An Introduction via the Density of Primes ideal for both self-study and classroom use. Intended for upper level undergraduates and beginning graduates, the only prerequisites are a basic knowledge of calculus, multivariable calculus, and some linear algebra. All necessary concepts from abstract algebra and complex analysis are introduced where needed.