Electron Scattering from Atoms, Ions and Molecules

Electron Scattering from Atoms, Ions and Molecules
Author: Rajesh Srivastava
Publisher: Mdpi AG
Total Pages: 0
Release: 2023-03-27
Genre: Science
ISBN: 9783036570112

Electron collision physics covers a broad range of processes in atoms and molecules. Understanding these processes can be achieved via experimental and theoretical investigations that support and challenge each other. The last few decades have been witness to tremendous progress in both the computational and experimental techniques applied to study and model electron-driven processes. Access to modern supercomputer facilities has allowed for the computational modelling of collision processes involving complex atoms and molecules; in turn, this allows for a sophisticated modelling and the diagnostic assessment of various plasmas. Applications of electron collision physics range from fusion, precision measurement and attoclocks to radiation damage and biomedical research. This volume collates diverse applications of collision physics, highlighting the importance and power of theoretical and computational techniques while also presenting new experiments which disclose exciting new developments in collision processes.

Variational Methods in Electron-Atom Scattering Theory

Variational Methods in Electron-Atom Scattering Theory
Author: Robert K. Nesbet
Publisher: Springer Science & Business Media
Total Pages: 234
Release: 2013-11-21
Genre: Science
ISBN: 1468484311

The investigation of scattering phenomena is a major theme of modern physics. A scattered particle provides a dynamical probe of the target system. The practical problem of interest here is the scattering of a low energy electron by an N-electron atom. It has been difficult in this area of study to achieve theoretical results that are even qualitatively correct, yet quantitative accuracy is often needed as an adjunct to experiment. The present book describes a quantitative theoretical method, or class of methods, that has been applied effectively to this problem. Quantum mechanical theory relevant to the scattering of an electron by an N-electron atom, which may gain or lose energy in the process, is summarized in Chapter 1. The variational theory itself is presented in Chapter 2, both as currently used and in forms that may facilitate future applications. The theory of multichannel resonance and threshold effects, which provide a rich structure to observed electron-atom scattering data, is presented in Chapter 3. Practical details of the computational implementation of the variational theory are given in Chapter 4. Chapters 5 and 6 summarize recent appli cations of the variational theory to problems of experimental interest, with many examples of the successful interpretation of complex structural fea tures observed in scattering experiments, and of the quantitative prediction of details of electron-atom scattering phenomena.

Electron Scattering

Electron Scattering
Author: Colm T. Whelan
Publisher: Springer Science & Business Media
Total Pages: 342
Release: 2006-01-17
Genre: Science
ISBN: 0387275673

There is a unity to physics; it is a discipline which provides the most fundamental understanding of the dynamics of matter and energy. To understand anything about a physical system you have to interact with it and one of the best ways to learn something is to use electrons as probes. This book is the result of a meeting, which took place in Magdalene College Cambridge in December 2001. Atomic, nuclear, cluster, soHd state, chemical and even bio- physicists got together to consider scattering electrons to explore matter in all its forms. Theory and experiment were represented in about equal measure. It was meeting marked by the most lively of discussions and the free exchange of ideas. We all learnt a lot. The Editors are grateful to EPSRC through its Collaborative Computational Project program (CCP2), lOPP, the Division of Atomic, Molecular, Optical and Plasma Physics (DAMOPP) and the Atomic Molecular Interactions group (AMIG) of the Institute of Physics for financial support. The smooth running of the meeting was enormously facilitated by the efficiency and helpfulness of the staff of Magdalene College, for which we are extremely grateful. This meeting marked the end for one of us (CTW) of a ten-year period as a fellow of the College and he would like to take this opportunity to thank the fellows and staff for the privilege of working with them.

Electron Scattering From Complex Nuclei V36A

Electron Scattering From Complex Nuclei V36A
Author: Herbert Uberall
Publisher: Academic Press
Total Pages: 496
Release: 2012-12-02
Genre: Science
ISBN: 0323148123

Electron Scattering from Complex Nuclei, Part A covers the historical phases of experimental development in elastic and inelastic electron scattering. This five-chapter text presents the logical development of the underlying theory of electron scattering. After briefly discussing the history of electron scattering from nuclei, this book goes on describing the theory of elastic scattering from a point nucleus, both with Born approximation and the accurate solution of the Dirac equation, as well as the corresponding experiments. The following chapter considers the analysis of nuclear charge distributions experiments using Born cross section and phase-shift methods. A chapter is devoted to the complete elastic and inelastic Born theory. This chapter also deals with the derivation of a theorem on the general form of the electron-nucleus scattering cross section, with an emphasis on the influence of the neglected transverse interaction on the cross section. The last chapter presents the status of elastic scattering along with some topics in muonic atoms that also determine nuclear charge densities. This book will be of great benefit to physicists, researchers, and graduate students who are interested in nuclear structure problems.

Scattering of Photons by Many-Electron Systems

Scattering of Photons by Many-Electron Systems
Author: Alexey N. Hopersky
Publisher: Springer Science & Business Media
Total Pages: 145
Release: 2009-11-03
Genre: Science
ISBN: 3642042562

The quantum physics of photon scattering processes in atoms, atomic ions and simple molecules, are discussed in this unique approach. Focusing on this topic from a theoretical perspective, this volume fulfills a need for researchers and students in the field.

Perfect/Complete Scattering Experiments

Perfect/Complete Scattering Experiments
Author: Hans Kleinpoppen
Publisher: Springer Science & Business Media
Total Pages: 350
Release: 2013-12-04
Genre: Science
ISBN: 3642405142

The main goal of this book is to elucidate what kind of experiment must be performed in order to determine the full set of independent parameters which can be extracted and calculated from theory, where electrons, photons, atoms, ions, molecules, or molecular ions may serve as the interacting constituents of matter. The feasibility of such perfect' and-or `complete' experiments, providing the complete quantum mechanical knowledge of the process, is associated with the enormous potential of modern research techniques, both, in experiment and theory. It is even difficult to overestimate the role of theory in setting of the complete experiment, starting with the fact that an experiment can be complete only within a certain theoretical framework, and ending with the direct prescription of what, and in what conditions should be measured to make the experiment `complete'. The language of the related theory is the language of quantum mechanical amplitudes and their relative phases. This book captures the spirit of research in the direction of the complete experiment in atomic and molecular physics, considering some of the basic quantum processes: scattering, Auger decay and photo-ionization. It includes a description of the experimental methods used to realize, step by step, the complete experiment up to the level of the amplitudes and phases. The corresponding arsenal includes, beyond determining the total cross section, the observation of angle and spin resolved quantities, photon polarization and correlation parameters, measurements applying coincidence techniques, preparing initially polarized targets, and even more sophisticated methods. The `complete' experiment is, until today, hardly to perform. Therefore, much attention is paid to the results of state-of-the-art experiments providing detailed information on the process, and their comparison to the related theoretical approaches, just to mention relativistic multi-configurational Dirac-Fock, convergent close-coupling, Breit-Pauli R-matrix, or relativistic distorted wave approaches, as well as Green's operator methods. This book has been written in honor of Herbert Walther and his major contribution to the field but even to stimulate advanced Bachelor and Master students by demonstrating that obviously nowadays atomic and molecular scattering physics yields and gives a much exciting appreciation for further advancing the field.

Theory of Electron—Atom Collisions

Theory of Electron—Atom Collisions
Author: Philip G. Burke
Publisher: Springer Science & Business Media
Total Pages: 264
Release: 2013-06-29
Genre: Science
ISBN: 1489915672

The authors aim to hone the theory of electron-atom and electron-ion collisions by developing mathematical equations and comparing their results to the wealth of recent experimental data. This first of three parts focuses on potential scattering, and will serve as an introduction to many of the concepts covered in Parts II and III. As these processes occur in so many of the physical sciences, researchers in astrophysics, atmospheric physics, plasma physics, and laser physics will all benefit from the monograph.

Fundamentals of Inelastic Electron Scattering

Fundamentals of Inelastic Electron Scattering
Author: P. Schattschneider
Publisher: Springer Science & Business Media
Total Pages: 205
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 3709188660

Electron energy loss spectroscopy (ELS) is a vast subject with a long and honorable history. The problem of stopping power for high energy particles interested the earliest pioneers of quantum mechanics such as Bohr and Bethe, who laid the theoretical foun dations of the subject. The experimental origins might perhaps be traced to the original Franck-Hertz experiment. The modern field includes topics as diverse as low energy reflection electron energy loss studies of surface vibrational modes, the spectroscopy of gases and the modern theory of plasmon excitation in crystals. For the study of ELS in electron microscopy, several historically distinct areas of physics are relevant, including the theory of the Debye Waller factor for virtual inelastic scattering, the use of complex optical potentials, lattice dynamics for crystalline specimens and the theory of atomic ionisation for isolated atoms. However the field of electron energy loss spectroscopy contains few useful texts which can be recommended for students. With the recent appearance of Raether's and Egerton's hooks (see text for references), we have for the first time both a comprehensive review text-due to Raether-and a lucid introductory text which emphasizes experimental aspects-due to Egerton. Raether's text tends to emphasize the recent work on surface plasmons, while the strength of Egerton's book is its treatment of inner shell excitations for microanalysis, based on the use of atomic wavefunctions for crystal electrons.