Electromigration And Electronic Device Degradation
Download Electromigration And Electronic Device Degradation full books in PDF, epub, and Kindle. Read online free Electromigration And Electronic Device Degradation ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : A. Christou |
Publisher | : Wiley-Interscience |
Total Pages | : 370 |
Release | : 1994 |
Genre | : Technology & Engineering |
ISBN | : |
Addresses electromigration failure modes in electronics covering both theory and experiments. Reviews silicon and GaAs technologies. Various rate controlling details are summarized including an investigation of temperature dependence. Concludes with a discussion regarding current status and future plans for electromigration resistant advanced metallization systems for VLSI.
Author | : Milton Ohring |
Publisher | : Academic Press |
Total Pages | : 759 |
Release | : 2014-10-14 |
Genre | : Technology & Engineering |
ISBN | : 0080575528 |
Reliability and Failure of Electronic Materials and Devices is a well-established and well-regarded reference work offering unique, single-source coverage of most major topics related to the performance and failure of materials used in electronic devices and electronics packaging. With a focus on statistically predicting failure and product yields, this book can help the design engineer, manufacturing engineer, and quality control engineer all better understand the common mechanisms that lead to electronics materials failures, including dielectric breakdown, hot-electron effects, and radiation damage. This new edition adds cutting-edge knowledge gained both in research labs and on the manufacturing floor, with new sections on plastics and other new packaging materials, new testing procedures, and new coverage of MEMS devices. Covers all major types of electronics materials degradation and their causes, including dielectric breakdown, hot-electron effects, electrostatic discharge, corrosion, and failure of contacts and solder joints New updated sections on "failure physics," on mass transport-induced failure in copper and low-k dielectrics, and on reliability of lead-free/reduced-lead solder connections New chapter on testing procedures, sample handling and sample selection, and experimental design Coverage of new packaging materials, including plastics and composites
Author | : F. Patrick McCluskey |
Publisher | : CRC Press |
Total Pages | : 354 |
Release | : 1996-12-13 |
Genre | : Technology & Engineering |
ISBN | : 9780849396236 |
The development of electronics that can operate at high temperatures has been identified as a critical technology for the next century. Increasingly, engineers will be called upon to design avionics, automotive, and geophysical electronic systems requiring components and packaging reliable to 200 °C and beyond. Until now, however, they have had no single resource on high temperature electronics to assist them. Such a resource is critically needed, since the design and manufacture of electronic components have now made it possible to design electronic systems that will operate reliably above the traditional temperature limit of 125 °C. However, successful system development efforts hinge on a firm understanding of the fundamentals of semiconductor physics and device processing, materials selection, package design, and thermal management, together with a knowledge of the intended application environments. High Temperature Electronics brings together this essential information and presents it for the first time in a unified way. Packaging and device engineers and technologists will find this book required reading for its coverage of the techniques and tradeoffs involved in materials selection, design, and thermal management and for its presentation of best design practices using actual fielded systems as examples. In addition, professors and students will find this book suitable for graduate-level courses because of its detailed level of explanation and its coverage of fundamental scientific concepts. Experts from the field of high temperature electronics have contributed to nine chapters covering topics ranging from semiconductor device selection to testing and final assembly.
Author | : Jens Lienig |
Publisher | : Springer |
Total Pages | : 171 |
Release | : 2018-02-23 |
Genre | : Technology & Engineering |
ISBN | : 3319735586 |
The book provides a comprehensive overview of electromigration and its effects on the reliability of electronic circuits. It introduces the physical process of electromigration, which gives the reader the requisite understanding and knowledge for adopting appropriate counter measures. A comprehensive set of options is presented for modifying the present IC design methodology to prevent electromigration. Finally, the authors show how specific effects can be exploited in present and future technologies to reduce electromigration’s negative impact on circuit reliability.
Author | : Cher Ming Tan |
Publisher | : World Scientific |
Total Pages | : 312 |
Release | : 2010 |
Genre | : Technology & Engineering |
ISBN | : 9814273325 |
Electromigration in ULSI Interconnections provides a comprehensive description of the electromigration in integrated circuits. It is intended for both beginner and advanced readers on electromigration in ULSI interconnections. It begins with the basic knowledge required for a detailed study on electromigration, and examines the various interconnected systems and their evolution employed in integrated circuit technology. The subsequent chapters provide a detailed description of the physics of electromigration in both Al- and Cu-based Interconnections, in the form of theoretical, experimental and numerical modeling studies. The differences in the electromigration of Al- and Cu-based interconnections and the corresponding underlying physical mechanisms for these differences are explained. The test structures, testing methodology, failure analysis methodology and statistical analysis of the test data for the experimental studies on electromigration are presented in a concise and rigorous manner. Methods of numerical modeling for the interconnect electromigration and their applications to the understanding of electromigration physics are described in detail with the aspects of material properties, interconnection design, and interconnect process parameters on the electromigration performances of interconnects in ULSI further elaborated upon. Finally, the extension of the studies to narrow interconnections is introduced, and future challenges on the study of electromigration are outlined and discussed.
Author | : Choong-Un Kim |
Publisher | : Elsevier |
Total Pages | : 353 |
Release | : 2011-08-28 |
Genre | : Technology & Engineering |
ISBN | : 0857093754 |
Understanding and limiting electromigration in thin films is essential to the continued development of advanced copper interconnects for integrated circuits. Electromigration in thin films and electronic devices provides an up-to-date review of key topics in this commercially important area.Part one consists of three introductory chapters, covering modelling of electromigration phenomena, modelling electromigration using the peridynamics approach and simulation and x-ray microbeam studies of electromigration. Part two deals with electromigration issues in copper interconnects, including x-ray microbeam analysis, voiding, microstructural evolution and electromigration failure. Finally, part three covers electromigration in solder, with chapters discussing topics such as electromigration-induced microstructural evolution and electromigration in flip-chip solder joints.With its distinguished editor and international team of contributors, Electromigration in thin films and electronic devices is an essential reference for materials scientists and engineers in the microelectronics, packaging and interconnects industries, as well as all those with an academic research interest in the field. - Provides up-to-date coverage of the continued development of advanced copper interconnects for integrated circuits - Comprehensively reviews modelling of electromigration phenomena, modelling electromigration using the peridynamics approach and simulation, and x-ray microbeam studies of electromigration - Deals with electromigration issues in copper interconnects, including x-ray microbeam analysis, voiding, microstructural evolution and electromigration failure
Author | : Elissa M. Bumiller |
Publisher | : CRC Press |
Total Pages | : 242 |
Release | : 2002-11-12 |
Genre | : Technology & Engineering |
ISBN | : 9780849314834 |
Contamination problems have become a major factor in determining the manufacturability, quality, and reliability of electronic assemblies. Understanding the mechanics and chemistry of contamination has become necessary for improving quality and reliability and reducing costs of electronic assemblies. Designed as a practical guide, Contamination of Electronic Assemblies presents a generalized overview of contamination problems and serves as a problem-solving reference point. It takes a step-by-step approach to identifying contaminants and their effects on electronic products at each level of manufacture. The text is divided into four sections: Laminate Manufacturing, Substrate Fabrication, Printed Wiring Board Assembly, and Conformal Coatings. These sections discuss all aspects of contamination of electronic assemblies, from the manufacture of glass fibers used in the laminates to the complete assembly of the finished product. The authors present detection and control methods that can help you reduce defects during the manufacturing process. With tables, figures, and fishbone diagrams serving as a quick reference, Contamination of Electronic Assemblies will help you familiarize yourself with the origination, detection, measurement, control, and prevention of contamination in electronic assemblies.
Author | : Dieter K. Schroder |
Publisher | : John Wiley & Sons |
Total Pages | : 800 |
Release | : 2015-06-29 |
Genre | : Technology & Engineering |
ISBN | : 0471739065 |
This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.
Author | : James E. Morris |
Publisher | : CRC Press |
Total Pages | : 940 |
Release | : 2017-11-22 |
Genre | : Technology & Engineering |
ISBN | : 1466565241 |
Nanoelectronic Device Applications Handbook gives a comprehensive snapshot of the state of the art in nanodevices for nanoelectronics applications. Combining breadth and depth, the book includes 68 chapters on topics that range from nano-scaled complementary metal–oxide–semiconductor (CMOS) devices through recent developments in nano capacitors and AlGaAs/GaAs devices. The contributors are world-renowned experts from academia and industry from around the globe. The handbook explores current research into potentially disruptive technologies for a post-CMOS world. These include: Nanoscale advances in current MOSFET/CMOS technology Nano capacitors for applications such as electronics packaging and humidity sensors Single electron transistors and other electron tunneling devices Quantum cellular automata and nanomagnetic logic Memristors as switching devices and for memory Graphene preparation, properties, and devices Carbon nanotubes (CNTs), both single CNT and random network Other CNT applications such as terahertz, sensors, interconnects, and capacitors Nano system architectures for reliability Nanowire device fabrication and applications Nanowire transistors Nanodevices for spintronics The book closes with a call for a new generation of simulation tools to handle nanoscale mechanisms in realistic nanodevice geometries. This timely handbook offers a wealth of insights into the application of nanoelectronics. It is an invaluable reference and source of ideas for anyone working in the rapidly expanding field of nanoelectronics.
Author | : J. W. McPherson |
Publisher | : Springer Science & Business Media |
Total Pages | : 406 |
Release | : 2013-06-03 |
Genre | : Technology & Engineering |
ISBN | : 3319001221 |
"Reliability Physics and Engineering" provides critically important information for designing and building reliable cost-effective products. The textbook contains numerous example problems with solutions. Included at the end of each chapter are exercise problems and answers. "Reliability Physics and Engineering" is a useful resource for students, engineers, and materials scientists.