Electrochemical Energy Storage

Electrochemical Energy Storage
Author: Jean-Marie Tarascon
Publisher: John Wiley & Sons
Total Pages: 96
Release: 2015-02-23
Genre: Science
ISBN: 1118998146

The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological advances as well as the challenges that must still be resolved in the field of electrochemical storage, taking into account sustainable development and the limited time available to us.

Handbook of Solid State Electrochemistry

Handbook of Solid State Electrochemistry
Author: P. J.. Gellings
Publisher:
Total Pages: 630
Release: 2020-06-30
Genre: Electrochemistry
ISBN: 9780367455866

The CRC Handbook of Solid State Electrochemistry is a one-stop resource treating the two main areas of solid state electrochemistry: electrochemical properties of slid such as oxides, halides, and cation conductors; and electrochemical kinetics and mechanisms of reactions occurring on solid electrolytes, including gas-phase electrocatalysis. The handbook also covers fundamentals of solid state electrochemistry, experimental methods, and computer-aided interpretation of experimental results used in the field. It also addresses applications of solid state electrochemistry in a number of fields, including: Solid oxide fuel cells, Batteries, Sensors and actuators, Semi-permeable membranes, Corrosion processes, Electrocatalysis, Electrochromic devices, For materials scientists, engineers, and researchers from academia and industry, the handbook provides guidance through the rapidly growing field of solid state electrochemistry. Features, Provides extensive attention to applications, Treats ionics and electrodics, Addresses the principles and interpretation of experimental methods, Provides theoretical background on solid state chemistry and electrochemistry Book jacket.

Electrochemical Supercapacitors for Energy Storage and Delivery

Electrochemical Supercapacitors for Energy Storage and Delivery
Author: Aiping Yu
Publisher: CRC Press
Total Pages: 373
Release: 2017-12-19
Genre: Science
ISBN: 1439869901

Although recognized as an important component of all energy storage and conversion technologies, electrochemical supercapacitators (ES) still face development challenges in order to reach their full potential. A thorough examination of development in the technology during the past decade, Electrochemical Supercapacitors for Energy Storage and Delivery: Fundamentals and Applications provides a comprehensive introduction to the ES from technical and practical aspects and crystallization of the technology, detailing the basics of ES as well as its components and characterization techniques. The book illuminates the practical aspects of understanding and applying the technology within the industry and provides sufficient technical detail of newer materials being developed by experts in the field which may surface in the future. The book discusses the technical challenges and the practical limitations and their associated parameters in ES technology. It also covers the structure and options for device packaging and materials choices such as electrode materials, electrolyte, current collector, and sealants based on comparison of available data. Supplying an in depth understanding of the components, design, and characterization of electrochemical supercapacitors, the book has wide-ranging appeal to industry experts and those new to the field. It can be used as a reference to apply to current work and a resource to foster ideas for new devices that will further the technology as it becomes a larger part of main stream energy storage.

Energy Storage

Energy Storage
Author: Umakanta Sahoo
Publisher: John Wiley & Sons
Total Pages: 306
Release: 2021-08-24
Genre: Science
ISBN: 1119555515

ENERGY STORAGE Written and edited by a team of well-known and respected experts in the field, this new volume on energy storage presents the state-of-the-art developments and challenges in the field of renewable energy systems for sustainability and scalability for engineers, researchers, academicians, industry professionals, consultants, and designers. The world’s energy landscape is very complex. Fossil fuels, especially because of hydraulic fracturing, are still a mainstay of global energy production, but renewable energy sources, such as wind, solar, and others, are increasing in importance for global energy sustainability. Experts and non-experts agree that the next game-changer in this area will be energy storage. Energy storage is crucial for continuous operation of power plants and can supplement basic power generation sources over a stand-alone system. It can enhance capacity and leads to greater security, including continuous electricity supply and other applications. A dependable energy storage system not only guarantees that the grid will not go down, but also increases efficacy and efficiency of any energy system. This groundbreaking new volume in this forward-thinking series addresses all of these issues, laying out the latest advances and addressing the most serious current concerns in energy storage. Whether for the veteran engineer or the student, this latest volume in the series, “Advances in Renewable Energy,” is a must-have for any library. This outstanding new volume: Is practically oriented and provides new concepts and designs for energy storage systems, offering greater benefit to the researcher, student, and engineer Offers a comprehensive coverage of energy storage system design, which is also useful for engineers and other professionals who are working in the field of solar energy, biomass, polygeneration, cooling, and process heat Filled with workable examples and designs that are helpful for practical applications, also offers a thorough, novel case study on hybrid energy systems with storage Is useful as a textbook for researchers, students, and faculty for understanding new ideas in this rapidly emerging field

Electrochemical Supercapacitors

Electrochemical Supercapacitors
Author: B. E. Conway
Publisher: Springer Science & Business Media
Total Pages: 714
Release: 2013-04-17
Genre: Science
ISBN: 1475730586

The first model for the distribution of ions near the surface of a metal electrode was devised by Helmholtz in 1874. He envisaged two parallel sheets of charges of opposite sign located one on the metal surface and the other on the solution side, a few nanometers away, exactly as in the case of a parallel plate capacitor. The rigidity of such a model was allowed for by Gouy and Chapman inde pendently, by considering that ions in solution are subject to thermal motion so that their distribution from the metal surface turns out diffuse. Stern recognized that ions in solution do not behave as point charges as in the Gouy-Chapman treatment, and let the center of the ion charges reside at some distance from the metal surface while the distribution was still governed by the Gouy-Chapman view. Finally, in 1947, D. C. Grahame transferred the knowledge of the struc ture of electrolyte solutions into the model of a metal/solution interface, by en visaging different planes of closest approach to the electrode surface depending on whether an ion is solvated or interacts directly with the solid wall. Thus, the Gouy-Chapman-Stern-Grahame model of the so-called electrical double layer was born, a model that is still qualitatively accepted, although theoreti cians have introduced a number of new parameters of which people were not aware 50 years ago.

Solid-liquid Electrochemical Interfaces

Solid-liquid Electrochemical Interfaces
Author: Gregory Jerkiewicz
Publisher:
Total Pages: 378
Release: 1997
Genre: Science
ISBN:

The wide scope covered by the 23 papers makes the collection suitable as a survey of current developments in the subject, for specialists in electrochemical surface science, newcomers to the field, or scientists working in related disciplines. The topics include computer simulation of the structure and dynamics of water near metal surfaces, the growth kinetics of phosphate films on metal oxide surfaces, anion adsorption and charge transfer on single-crystal electrodes, an electrochemical and in-situ scanning-probe microscopic study of electroactive polymers, and the temperature dependence of the growth of surface oxide films on rhodium electrodes. Annotation copyrighted by Book News, Inc., Portland, OR.

Atomic-Scale Modelling of Electrochemical Systems

Atomic-Scale Modelling of Electrochemical Systems
Author: Marko M. Melander
Publisher: John Wiley & Sons
Total Pages: 372
Release: 2021-09-09
Genre: Science
ISBN: 1119605636

Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.

NMR and MRI of Electrochemical Energy Storage Materials and Devices

NMR and MRI of Electrochemical Energy Storage Materials and Devices
Author: Yong Yang
Publisher: Royal Society of Chemistry
Total Pages: 573
Release: 2021-06-21
Genre: Science
ISBN: 1788018486

The aim of this book is to introduce the use of NMR and MRI methods for investigating electrochemical storage materials and devices to help both NMR spectroscopists entering the field of batteries and battery specialists seeking diagnostic methods for material and device degradation.