Nanotechnology

Nanotechnology
Author: Raúl J. Martín-Palma
Publisher: SPIE-International Society for Optical Engineering
Total Pages: 0
Release: 2010
Genre: Microscopes
ISBN: 9780819480750

The past few decades have seen an explosive increase in our ability to create nanostructures and nanosystems with a great degree of control, using a diversity of techniques. This ability has been accompanied by a similar enhancement in our ability to characterize structures and systems at the nanoscale. This book provides a broad overview of those nanostructures and nanosystems (together termed Nanotechnology). It covers structural characteristics and properties of nanostructures, nanofabrication techniques, methods for characterizing nanostructures, and applications for nanomaterials. The book also provides a thought-provoking assessment of the possible implications of nanotechnology in society, and likely future trends. Nanotechnology: A Crash Course is accessible to a wide readership and will meet the immediate needs of college graduates, doctoral students, professors, and researchers alike, who are looking for a quick yet inclusive grasp of this cutting-edge technology.Contents: To the Reader; Nomenclature; Low-Dimensional Structures; Properties of Nanostructures; Nanofabrication; Characterization of Nanostructures and Nanomaterials; Nanomaterials and Applications; Future Prospects; Index Suppose that you recently graduated with a B.S. degree in science or engineering and will commence your first professional employment tomorrow. Earlier this afternoon, your manager called to ask if you know something about nanotechnology, so that tomorrow you can begin developing an internal proposal for your division. But either your college did not offer a course on nanotechnology or you decided not to take one. You need a crash course in nanotechnology, just to get you off the ground.Suppose that you are a doctoral student in a department whose candidacy examination requires you to write a 5 10-page research proposal on an emerging topic assigned by the faculty committee. Suppose that your assigned topic intersects with nanotechnology, but all that you know about nanotechnology came from a couple of hour-long graduate seminars that you attended the previous semester.You need a crash course in nanotechnology, not only to write an impressive introduction but also to acquaint yourself with terminology to conduct efficient searches on Google Scholar, Web of Science, Scopus, etc. Suppose that you are a post-doctoral researcher at either an academic or an industrial research institution. Your supervisor has asked you to advise a shining undergraduate student for a summer project in nanotechnology, although the focus of your own research is elsewhere. You need a crash course in nanotechnology, to start the youngster off in a promising direction. Suppose that you are a new assistant professor. Your departmental head advises that your research proposal to a government program to assist new faculty members begin research programs lacks that wow factor that would virtually guarantee success. Put in a nano angle, you are told. You need a crash course in nanotechnology, to clothe your proposal in the glory of nano. Suppose that you are a middle-aged professor undergoing a midlife crisis. Instead of changing your family or lifestyle, you may choose to change your research focus to an emerging research area.You need a crash course in nanotechnology, to assess your current resources and future needs. With your particular need in mind, we persuaded SPIE Press to publish our short and readable introduction to nanotechnology. WhileNanotechnology: A Crash Course is unlikely to convert you overnight into a nanostar, it would meet your immediate need and very likely help you steer your professional life in a new direction.

Low-dimensional Organic Conductors

Low-dimensional Organic Conductors
Author: Andrzej Graja
Publisher: World Scientific
Total Pages: 320
Release: 1992
Genre: Science
ISBN: 9789810204778

This book is a review of physical properties of organic conductors and superconductors. It is amply illustrated and contains numerous data concerning the latest elements and equipment constructed of low-dimensional organic conductors. It is hoped that the book will be stimulating for technologists and designers working on contemporary electronics.

Low-Dimensional Solids

Low-Dimensional Solids
Author: Duncan W. Bruce
Publisher: John Wiley & Sons
Total Pages: 380
Release: 2011-03-29
Genre: Technology & Engineering
ISBN: 1119972930

With physical properties that often may not be described by the transposition of physical laws from 3D space across to 2D or even 1D space, low-dimensional solids exhibit a high degree of anisotropy in the spatial distribution of their chemical bonds. This means that they can demonstrate new phenomena such as charge-density waves and can display nanoparticulate (0D), fibrous (1D) and lamellar (2D) morphologies. This text presents some of the most recent research into the synthesis and properties of these solids and covers: Metal Oxide Nanoparticles Inorganic Nanotubes and Nanowires Biomedical Applications of Layered Double Hydroxides Carbon Nanotubes and Related Structures Superconducting Borides Introducing topics such as novel layered superconductors, inorganic-DNA delivery systems and the chemistry and physics of inorganic nanotubes and nanosheets, this book discusses some of the most exciting concepts in this developing field. Additional volumes in the Inorganic Materials Book Series: Molecular Materials Functional Oxides Porous Materials Energy Materials All volumes are sold individually or as comprehensive 5 Volume Set.

Rich Quasiparticle Properties of Low Dimensional Systems

Rich Quasiparticle Properties of Low Dimensional Systems
Author: Dr Cheng-Hsueh Yang
Publisher:
Total Pages: 0
Release: 2021
Genre: Carbon
ISBN: 9780750337830

This book discusses the essential properties of carbon nanotubes and 2D graphene systems. The book focuses on the fundamental excitation properties of a large range of graphene-related materials, presenting a new theoretical framework that couples electronic properties and e-e Coulomb interactions together in order to thoroughly explore Coulomb excitations and decay rates in carbon-nanotube-related systems.

The Chemical Bond in Inorganic Chemistry

The Chemical Bond in Inorganic Chemistry
Author: I. David Brown
Publisher: Oxford University Press
Total Pages: 313
Release: 2016-09-29
Genre: Science
ISBN: 019109305X

The bond valence model, a description of acid-base bonding, is widely used for analysing and modelling the structures and properties of solids and liquids. Unlike other models of inorganic chemical bonding, the bond valence model is simple, intuitive, and predictive, and is accessible to anyone with a pocket calculator and a secondary school command of chemistry and physics. This new edition of 'The Chemical Bond in Inorganic Chemistry: The Bond Valence Model' shows how chemical properties arise naturally from the conflict between the constraints of chemistry and those of three-dimensional space. The book derives the rules of the bond valence model, as well as those of the traditional covalent, ionic and popular VSEPR models, by identifying the chemical bond with the electrostatic flux linking the bonded atoms. Most of the new edition is devoted to showing how to apply these ideas to real materials including crystals, liquids, glasses and surfaces. The work includes detailed examples of applications, and the final chapter explores the relationship between the flux and quantum theories of the bond.

Fundamentals of Low Dimensional Magnets

Fundamentals of Low Dimensional Magnets
Author: Ram K. Gupta
Publisher: CRC Press
Total Pages: 380
Release: 2022-08-29
Genre: Science
ISBN: 1000640175

A low-dimensional magnet is a key to the next generation of electronic devices. In some respects, low-dimensional magnets refer to nanomagnets (nanostructured magnets) or single-molecule magnets (molecular nanomagnets). They also include the group of magnetic nanoparticles, which have been widely used in biomedicine, technology, industries, and environmental remediation. Low-dimensional magnetic materials can be used effectively in the future in powerful computers (hard drives, magnetic random-access memory, ultra-low power consumption switches, etc.). The properties of these materials largely depend on the doping level, phase, defects, and morphology. This book covers various nanomagnets and magnetic materials. The basic concepts, various synthetic approaches, characterizations, and mathematical understanding of nanomaterials are provided. Some fundamental applications of 1D, 2D, and 3D materials are covered. This book provides the fundamentals of low-dimensional magnets along with synthesis, theories, structure-property relations, and applications of ferromagnetic nanomaterials. This book broadens our fundamental understanding of ferromagnetism and mechanisms for realization and advancement in devices with improved energy efficiency and high storage capacity.

Springer Handbook of Electronic and Photonic Materials

Springer Handbook of Electronic and Photonic Materials
Author: Safa Kasap
Publisher: Springer
Total Pages: 1536
Release: 2017-10-04
Genre: Technology & Engineering
ISBN: 331948933X

The second, updated edition of this essential reference book provides a wealth of detail on a wide range of electronic and photonic materials, starting from fundamentals and building up to advanced topics and applications. Its extensive coverage, with clear illustrations and applications, carefully selected chapter sequencing and logical flow, makes it very different from other electronic materials handbooks. It has been written by professionals in the field and instructors who teach the subject at a university or in corporate laboratories. The Springer Handbook of Electronic and Photonic Materials, second edition, includes practical applications used as examples, details of experimental techniques, useful tables that summarize equations, and, most importantly, properties of various materials, as well as an extensive glossary. Along with significant updates to the content and the references, the second edition includes a number of new chapters such as those covering novel materials and selected applications. This handbook is a valuable resource for graduate students, researchers and practicing professionals working in the area of electronic, optoelectronic and photonic materials.

Electrical, Electronic and Magnetic Properties of Solids

Electrical, Electronic and Magnetic Properties of Solids
Author: D. B. Sirdeshmukh
Publisher: Springer
Total Pages: 0
Release: 2016-08-23
Genre: Technology & Engineering
ISBN: 9783319379135

This book about electrical, electronic and magnetic properties of solids gives guidance to understand the electrical conduction processes and magnetism in a whole range of solids: ionic solids, metals, semiconductors, fast-ion conductors and superconductors. The experimental discussion is enriched by related theories like the free electron theory and the band theory of solids. A large spectrum of topics is presented in this book: Hall effect, magnetoresistance, physics of semiconductors, functioning of semiconductor devices, fast-ion conduction, classical and modern aspects of superconductivity. The book explains the magnetic properties of solids and theoretical and experimental aspects of the various manifestations of magnetism, dia-, para-, ferro-, antiferro- and ferri-magnetism. The consideration of magnetic symmetry, magnetic structures and their experimental determination completes the spectrum of the book. Theories, techniques and applications of NMR and ESR complete the analytical spectrum presented. Some of these topics are not represented in standard books. Each topic is thoroughly treated. There are historical remarks and a discussion of the role of symmetry in the book. The book lays great emphasis on principles and concepts and is written in a comprehensive way. It contains much new information. This book complements an earlier book by the same authors (Atomistic properties of solids - Springer, 2011).