Elastodynamic Analysis of a Propagating Finite Crack in a Micropolar Elastic Solid

Elastodynamic Analysis of a Propagating Finite Crack in a Micropolar Elastic Solid
Author: Seog-young Han
Publisher:
Total Pages: 204
Release: 1989
Genre: Micropolar elasticity
ISBN:

A dynamic propagation of a finite crack of opening mode in a micropolar elastic solid was investigated. By using an integral transform method, a pair of twodimensional singular integral equations governing stress and couple stress was formulated in terms of the displacement transverse to the crack, macro- and microrotations, and microinertia. These integral equations are solved numerically. Solutions for dynamic stress intensity and couple stress intensity factors are obtained by utilizing the values of the strengths of the square root singularities in the macro-rotation and the gradient of the micro-rotation at the crack tips. The motion of the crack tips and the load on the crack surface are not prescribed in the formulation of the problem. Therefore, the method of solution is applicable to nonuniform rates of propagation of a crack under an arbitrary time-dependent load on the crack surface. The behavior of the micro-rotation field, and the dynamic couple stress intensity factor, which are influenced by microinertia, in addition to the dynamic stress intensity factor, are examined. The classical elasticity solution for the corresponding problem follows as a special case of our solution when the micropolar moduli are dropped.

Methods of Analysis and Solutions of Crack Problems

Methods of Analysis and Solutions of Crack Problems
Author: George C. Sih
Publisher: Springer Science & Business Media
Total Pages: 578
Release: 1973-01-31
Genre: Science
ISBN: 9789001798604

It is weH known that the traditional failure criteria cannot adequately explain failures which occur at a nominal stress level considerably lower than the ultimate strength of the material. The current procedure for predicting the safe loads or safe useful life of a structural member has been evolved around the discipline oflinear fracture mechanics. This approach introduces the concept of a crack extension force which can be used to rank materials in some order of fracture resistance. The idea is to determine the largest crack that a material will tolerate without failure. Laboratory methods for characterizing the fracture toughness of many engineering materials are now available. While these test data are useful for providing some rough guidance in the choice of materials, it is not clear how they could be used in the design of a structure. The understanding of the relationship between laboratory tests and fracture design of structures is, to say the least, deficient. Fracture mechanics is presently at astandstill until the basic problems of scaling from laboratory models to fuH size structures and mixed mode crack propagation are resolved. The answers to these questions require some basic understanding ofthe theory and will not be found by testing more specimens. The current theory of fracture is inadequate for many reasons. First of aH it can only treat idealized problems where the applied load must be directed normal to the crack plane.

Seismic Wave Propagation in Non-Homogeneous Elastic Media by Boundary Elements

Seismic Wave Propagation in Non-Homogeneous Elastic Media by Boundary Elements
Author: George D. Manolis
Publisher: Springer
Total Pages: 301
Release: 2016-09-23
Genre: Technology & Engineering
ISBN: 3319452061

This book focuses on the mathematical potential and computational efficiency of the Boundary Element Method (BEM) for modeling seismic wave propagation in either continuous or discrete inhomogeneous elastic/viscoelastic, isotropic/anisotropic media containing multiple cavities, cracks, inclusions and surface topography. BEM models may take into account the entire seismic wave path from the seismic source through the geological deposits all the way up to the local site under consideration. The general presentation of the theoretical basis of elastodynamics for inhomogeneous and heterogeneous continua in the first part is followed by the analytical derivation of fundamental solutions and Green's functions for the governing field equations by the usage of Fourier and Radon transforms. The numerical implementation of the BEM is for antiplane in the second part as well as for plane strain boundary value problems in the third part. Verification studies and parametric analysis appear throughout the book, as do both recent references and seminal ones from the past. Since the background of the authors is in solid mechanics and mathematical physics, the presented BEM formulations are valid for many areas such as civil engineering, geophysics, material science and all others concerning elastic wave propagation through inhomogeneous and heterogeneous media. The material presented in this book is suitable for self-study. The book is written at a level suitable for advanced undergraduates or beginning graduate students in solid mechanics, computational mechanics and fracture mechanics.