Efficient Design Of Variation Resilient Ultra Low Energy Digital Processors
Download Efficient Design Of Variation Resilient Ultra Low Energy Digital Processors full books in PDF, epub, and Kindle. Read online free Efficient Design Of Variation Resilient Ultra Low Energy Digital Processors ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Hans Reyserhove |
Publisher | : Springer |
Total Pages | : 227 |
Release | : 2019-03-27 |
Genre | : Technology & Engineering |
ISBN | : 3030124851 |
This book enables readers to achieve ultra-low energy digital system performance. The author’s main focus is the energy consumption of microcontroller architectures in digital (sub)-systems. The book covers a broad range of topics extensively: from circuits through design strategy to system architectures. The result is a set of techniques and a context to realize minimum energy digital systems. Several prototype silicon implementations are discussed, which put the proposed techniques to the test. The achieved results demonstrate an extraordinary combination of variation-resilience, high speed performance and ultra-low energy.
Author | : Nele Reynders |
Publisher | : Springer |
Total Pages | : 207 |
Release | : 2015-04-14 |
Genre | : Technology & Engineering |
ISBN | : 3319161369 |
This book focuses on increasing the energy-efficiency of electronic devices so that portable applications can have a longer stand-alone time on the same battery. The authors explain the energy-efficiency benefits that ultra-low-voltage circuits provide and provide answers to tackle the challenges which ultra-low-voltage operation poses. An innovative design methodology is presented, verified, and validated by four prototypes in advanced CMOS technologies. These prototypes are shown to achieve high energy-efficiency through their successful functionality at ultra-low supply voltages.
Author | : Boris Murmann |
Publisher | : Springer Nature |
Total Pages | : 597 |
Release | : 2020-06-08 |
Genre | : Science |
ISBN | : 3030183386 |
In this book, a global team of experts from academia, research institutes and industry presents their vision on how new nano-chip architectures will enable the performance and energy efficiency needed for AI-driven advancements in autonomous mobility, healthcare, and man-machine cooperation. Recent reviews of the status quo, as presented in CHIPS 2020 (Springer), have prompted the need for an urgent reassessment of opportunities in nanoelectronic information technology. As such, this book explores the foundations of a new era in nanoelectronics that will drive progress in intelligent chip systems for energy-efficient information technology, on-chip deep learning for data analytics, and quantum computing. Given its scope, this book provides a timely compendium that hopes to inspire and shape the future of nanoelectronics in the decades to come.
Author | : Shilpi Birla |
Publisher | : CRC Press |
Total Pages | : 339 |
Release | : 2023-11-14 |
Genre | : Technology & Engineering |
ISBN | : 1000995178 |
This reference textbook discusses low power designs for emerging applications. This book focuses on the research challenges associated with theory, design, and applications towards emerging Microelectronics and VLSI device design and developments, about low power consumptions. The advancements in large-scale integration technologies are principally responsible for the growth of the electronics industry. This book is focused on senior undergraduates, graduate students, and professionals in the field of electrical and electronics engineering, nanotechnology. This book: Discusses various low power techniques and applications for designing efficient circuits Covers advance nanodevices such as FinFETs, TFETs, CNTFETs Covers various emerging areas like Quantum-Dot Cellular Automata Circuits and FPGAs and sensors Discusses applications like memory design for low power applications using nanodevices The number of options for ICs in control applications, telecommunications, high-performance computing, and consumer electronics continues to grow with the emergence of VLSI designs. Nanodevices have revolutionized the electronics market and human life; it has impacted individual life to make it more convenient. They are ruling every sector such as electronics, energy, biomedicine, food, environment, and communication. This book discusses various emerging low power applications using CMOS and other emerging nanodevices.
Author | : Swarup Bhunia |
Publisher | : Springer Science & Business Media |
Total Pages | : 444 |
Release | : 2010-11-10 |
Genre | : Technology & Engineering |
ISBN | : 1441974180 |
Design considerations for low-power operations and robustness with respect to variations typically impose contradictory requirements. Low-power design techniques such as voltage scaling, dual-threshold assignment and gate sizing can have large negative impact on parametric yield under process variations. This book focuses on circuit/architectural design techniques for achieving low power operation under parameter variations. We consider both logic and memory design aspects and cover modeling and analysis, as well as design methodology to achieve simultaneously low power and variation tolerance, while minimizing design overhead. This book will discuss current industrial practices and emerging challenges at future technology nodes.
Author | : Michail Maniatakos |
Publisher | : Springer |
Total Pages | : 271 |
Release | : 2019-05-16 |
Genre | : Computers |
ISBN | : 303015663X |
This book contains extended and revised versions of the best papers presented at the 25th IFIP WG 10.5/IEEE International Conference on Very Large Scale Integration, VLSI-SoC 2017, held in Abu Dhabi, United Arab Emirates, in August 2017. The 11 papers included in this book were carefully reviewed and selected from the 33 full papers presented at the conference. The papers cover a wide range of topics in VLSI technology and advanced research. They address the latest scientific and industrial results and developments as well as future trends in the field of System-on-Chip (SoC) Design. On the occasion of the silver jubilee of the VLSI-SoC conference series the book also includes a special chapter that presents the history of the VLSI-SoC series of conferences and its relation with VLSI-SoC evolution since the early 80s up to the present.
Author | : Vibhu Sharma |
Publisher | : Springer Science & Business Media |
Total Pages | : 179 |
Release | : 2012-07-27 |
Genre | : Technology & Engineering |
ISBN | : 1461440394 |
This book features various, ultra low energy, variability resilient SRAM circuit design techniques for wireless sensor network applications. Conventional SRAM design targets area efficiency and high performance at the increased cost of energy consumption, making it unsuitable for computation-intensive sensor node applications. This book, therefore, guides the reader through different techniques at the circuit level for reducing energy consumption and increasing the variability resilience. It includes a detailed review of the most efficient circuit design techniques and trade-offs, introduces new memory architecture techniques, sense amplifier circuits and voltage optimization methods for reducing the impact of variability for the advanced technology nodes.
Author | : Massimo Alioto |
Publisher | : Springer |
Total Pages | : 527 |
Release | : 2017-01-23 |
Genre | : Technology & Engineering |
ISBN | : 3319514822 |
This book offers the first comprehensive view on integrated circuit and system design for the Internet of Things (IoT), and in particular for the tiny nodes at its edge. The authors provide a fresh perspective on how the IoT will evolve based on recent and foreseeable trends in the semiconductor industry, highlighting the key challenges, as well as the opportunities for circuit and system innovation to address them. This book describes what the IoT really means from the design point of view, and how the constraints imposed by applications translate into integrated circuit requirements and design guidelines. Chapter contributions equally come from industry and academia. After providing a system perspective on IoT nodes, this book focuses on state-of-the-art design techniques for IoT applications, encompassing the fundamental sub-systems encountered in Systems on Chip for IoT: ultra-low power digital architectures and circuits low- and zero-leakage memories (including emerging technologies) circuits for hardware security and authentication System on Chip design methodologies on-chip power management and energy harvesting ultra-low power analog interfaces and analog-digital conversion short-range radios miniaturized battery technologies packaging and assembly of IoT integrated systems (on silicon and non-silicon substrates). As a common thread, all chapters conclude with a prospective view on the foreseeable evolution of the related technologies for IoT. The concepts developed throughout the book are exemplified by two IoT node system demonstrations from industry. The unique balance between breadth and depth of this book: enables expert readers quickly to develop an understanding of the specific challenges and state-of-the-art solutions for IoT, as well as their evolution in the foreseeable future provides non-experts with a comprehensive introduction to integrated circuit design for IoT, and serves as an excellent starting point for further learning, thanks to the broad coverage of topics and selected references makes it very well suited for practicing engineers and scientists working in the hardware and chip design for IoT, and as textbook for senior undergraduate, graduate and postgraduate students ( familiar with analog and digital circuits).
Author | : Nicola Bombieri |
Publisher | : Springer |
Total Pages | : 239 |
Release | : 2016-02-17 |
Genre | : Technology & Engineering |
ISBN | : 3319273922 |
This book-presents new methods and tools for the integration and simulation of smart devices. The design approach described in this book explicitly accounts for integration of Smart Systems components and subsystems as a specific constraint. It includes methodologies and EDA tools to enable multi-disciplinary and multi-scale modeling and design, simulation of multi-domain systems, subsystems and components at all levels of abstraction, system integration and exploration for optimization of functional and non-functional metrics. By covering theoretical and practical aspects of smart device design, this book targets people who are working and studying on hardware/software modelling, component integration and simulation under different positions (system integrators, designers, developers, researchers, teachers, students etc.). In particular, it is a good introduction to people who have interest in managing heterogeneous components in an efficient and effective way on different domains and different abstraction levels. People active in smart device development can understand both the current status of practice and future research directions. · Provides a comprehensive overview of smart systems design, focusing on design challenges and cutting-edge solutions; · Enables development of a co-simulation and co-design environment that accounts for the peculiarities of the basic subsystems and components to be integrated; · Describes development of modeling and design techniques, methods and tools that enable multi-domain simulation and optimization at various levels of abstraction and across different technological domains.
Author | : Jawad Haj-Yahya |
Publisher | : Springer |
Total Pages | : 165 |
Release | : 2018-04-04 |
Genre | : Technology & Engineering |
ISBN | : 9789811085536 |
This book explores energy efficiency techniques for high-performance computing (HPC) systems using power-management methods. Adopting a step-by-step approach, it describes power-management flows, algorithms and mechanism that are employed in modern processors such as Intel Sandy Bridge, Haswell, Skylake and other architectures (e.g. ARM). Further, it includes practical examples and recent studies demonstrating how modem processors dynamically manage wide power ranges, from a few milliwatts in the lowest idle power state, to tens of watts in turbo state. Moreover, the book explains how thermal and power deliveries are managed in the context this huge power range. The book also discusses the different metrics for energy efficiency, presents several methods and applications of the power and energy estimation, and shows how by using innovative power estimation methods and new algorithms modern processors are able to optimize metrics such as power, energy, and performance. Different power estimation tools are presented, including tools that break down the power consumption of modern processors at sub-processor core/thread granularity. The book also investigates software, firmware and hardware coordination methods of reducing power consumption, for example a compiler-assisted power management method to overcome power excursions. Lastly, it examines firmware algorithms for dynamic cache resizing and dynamic voltage and frequency scaling (DVFS) for memory sub-systems.