Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions

Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions
Author: Yukitaka Murakami
Publisher: Elsevier
Total Pages: 384
Release: 2002-04-29
Genre: Technology & Engineering
ISBN: 0080496563

Metal fatigue is an essential consideration for engineers and researchers who are looking at factors that cause metals to fail through stress, corrosion, etc. This is an English translation of a book originally published in Japan in 1993, with an additional two chapters on the fatigue failure of steels and the effect of surface roughness on fatigue strength. The methodology is based on important and reliable results and may be usefully applied to other fatigue problems not directly treated in this book.

Titanium and Titanium Alloys

Titanium and Titanium Alloys
Author: Christoph Leyens
Publisher: John Wiley & Sons
Total Pages: 532
Release: 2006-03-06
Genre: Technology & Engineering
ISBN: 3527605207

This handbook is an excellent reference for materials scientists and engineers needing to gain more knowledge about these engineering materials. Following introductory chapters on the fundamental materials properties of titanium, readers will find comprehensive descriptions of the development, processing and properties of modern titanium alloys. There then follows detailed discussion of the applications of titanium and its alloys in aerospace, medicine, energy and automotive technology.

Titanium

Titanium
Author: Matthew J. Donachie
Publisher: ASM International
Total Pages: 381
Release: 2000
Genre: Technology & Engineering
ISBN: 161503062X

Designed to support the need of engineering, management, and other professionals for information on titanium by providing an overview of the major topics, this book provides a concise summary of the most useful information required to understand titanium and its alloys. The author provides a review of the significant features of the metallurgy and application of titanium and its alloys. All technical aspects of the use of titanium are covered, with sufficient metals property data for most users. Because of its unique density, corrosion resistance, and relative strength advantages over competing materials such as aluminum, steels, and superalloys, titanium has found a niche in many industries. Much of this use has occurred through military research, and subsequent applications in aircraft, of gas turbine engines, although more recent use features replacement joints, golf clubs, and bicycles.Contents include: A primer on titanium and its alloys, Introduction to selection of titanium alloys, Understanding titanium's metallurgy and mill products, Forging and forming, Castings, Powder metallurgy, Heat treating, Joining technology and practice, Machining, Cleaning and finishing, Structure/processing/property relationships, Corrosion resistance, Advanced alloys and future directions, Appendices: Summary table of titanium alloys, Titanium alloy datasheets, Cross-reference to titanium alloys, Listing of selected specification and standardization organizations, Selected manufacturers, suppliers, services, Corrosion data, Machining data.

Machining of Titanium Alloys

Machining of Titanium Alloys
Author: J. Paulo Davim
Publisher: Springer
Total Pages: 154
Release: 2014-07-05
Genre: Technology & Engineering
ISBN: 3662439026

This book presents a collection of examples illustrating the resent research advances in the machining of titanium alloys. These materials have excellent strength and fracture toughness as well as low density and good corrosion resistance; however, machinability is still poor due to their low thermal conductivity and high chemical reactivity with cutting tool materials. This book presents solutions to enhance machinability in titanium-based alloys and serves as a useful reference to professionals and researchers in aerospace, automotive and biomedical fields.

Ti-Based Biomaterials

Ti-Based Biomaterials
Author: Jarosław Jakubowicz
Publisher: MDPI
Total Pages: 268
Release: 2020-06-17
Genre: Science
ISBN: 303928987X

Recently, great attention has been paid to materials that can be used in the human body to prepare parts that replace failed bone structures. Of all materials, Ti-based materials are the most desirable, because they provide an optimum combination of mechanical, chemical, and biological properties. The successful application of Ti biomaterials has been confirmed mainly in dentistry, orthopedics, and traumatology. Titanium biocompatibility is practically the highest of all metallic biomaterials; however, new solutions are being sought to continuously improve their biocompatibility and osseointegration. Thus, the chemical modification of Ti results in the formation of new alloys or composites, which provide new perspectives for Ti biomaterials applications. This book covers broad aspects of Ti-based biomaterials concerning the design of their structure, mechanical, and biological properties. This book demonstrates that the new Ti-based compounds and their surface treatment provide the best properties for biomedical applications.