Statistical Methods in Agriculture and Experimental Biology

Statistical Methods in Agriculture and Experimental Biology
Author: Roger Mead
Publisher: CRC Press
Total Pages: 490
Release: 2017-11-22
Genre: Mathematics
ISBN: 1351414283

The third edition of this popular introductory text maintains the character that won worldwide respect for its predecessors but features a number of enhancements that broaden its scope, increase its utility, and bring the treatment thoroughly up to date. It provides complete coverage of the statistical ideas and methods essential to students in agriculture or experimental biology. In addition to covering fundamental methodology, this treatment also includes more advanced topics that the authors believe help develop an appreciation of the breadth of statistical methodology now available. The emphasis is not on mathematical detail, but on ensuring students understand why and when various methods should be used. New in the Third Edition: A chapter on the two simplest yet most important methods of multivariate analysis Increased emphasis on modern computer applications Discussions on a wider range of data types and the graphical display of data Analysis of mixed cropping experiments and on-farm experiments

Handbook of Maize

Handbook of Maize
Author: Jeff L. Bennetzen
Publisher: Springer Science & Business Media
Total Pages: 785
Release: 2009-01-16
Genre: Technology & Engineering
ISBN: 0387778632

Maize is one of the world’s highest value crops, with a multibillion dollar annual contribution to agriculture. The great adaptability and high yields available for maize as a food, feed and forage crop have led to its current production on over 140 million hectares worldwide, with acreage continuing to grow at the expense of other crops. In terms of tons of cereal grain produced worldwide, maize has been number one for many years. Moreover, maize is expanding its contribution to non-food uses, including as a major source of ethanol as a fuel additive or fuel alternative in the US. In addition, maize has been at the center of the transgenic plant controversy, serving as the first food crop with released transgenic varieties. By 2008, maize will have its genome sequence released, providing the sequence of the first average-size plant genome (the four plant genomes that are now sequenced come from unusually tiny genomes) and of the most complex genome sequenced from any organism. Among plant science researchers, maize has the second largest and most productive research community, trailing only the Arabidopsis community in scale and significance. At the applied research and commercial improvement levels, maize has no peers in agriculture, and consists of thousands of contributors worthwhile. A comprehensive book on the biology of maize has not been published. The "Handbook of Maize: the Genetics and Genomics" center on the past, present and future of maize as a model for plant science research and crop improvement. The books include brief, focused chapters from the foremost maize experts and feature a succinct collection of informative images representing the maize germplasm collection.

Plant Biotechnology

Plant Biotechnology
Author: Agnès Ricroch
Publisher: Springer
Total Pages: 290
Release: 2014-07-11
Genre: Technology & Engineering
ISBN: 331906892X

Written in easy to follow language, the book presents cutting-edge agriculturally relevant plant biotechnologies and applications in a manner that is accessible to all. This book introduces the scope and method of plant biotechnologies and molecular breeding within the context of environmental analysis and assessment, a diminishing supply of productive arable land, scarce water resources and climate change. Authors who have studied how agro ecosystems have changed during the first decade and a half of commercial deployment review effects and stress needs that must be considered to make these tools sustainable.

Plant Nutrition

Plant Nutrition
Author: Walter Horst
Publisher: Springer Science & Business Media
Total Pages: 1068
Release: 2006-05-18
Genre: Science
ISBN: 030647624X

This volume is a compilation of extended abstracts of all papers presented at the 14th International Plant Nutrition Colloquium. Over 500 oral and poster presentations illustrate current knowledge and research emphasis in this subject, providing a comprehensive view of the state of plant nutrition research.

Nitrogen in the Environment: Sources, Problems and Management

Nitrogen in the Environment: Sources, Problems and Management
Author: R.F. Follett
Publisher: Gulf Professional Publishing
Total Pages: 539
Release: 2001-12-03
Genre: Technology & Engineering
ISBN: 0080537561

Nitrogen in the Environment: Sources, Problems, and Management is the first volume to provide a holistic perspective and comprehensive treatment of nitrogen from field, to ecosystem, to treatment of urban and rural drinking water supplies, while also including a historical overview, human health impacts and policy considerations. It provides a worldwide perspective on nitrogen and agriculture. Nitrogen is one of the most critical elements required in agricultural systems for the production of crops for feed, food and fiber. The ever-increasing world population requires increasing use of nitrogen in agriculture to supply human needs for dietary protein. Worldwide demand for nitrogen will increase as a direct response to increasing population. Strategies and perspectives are considered to improve nitrogen-use efficiency. Issues of nitrogen in crop and human nutrition, and transport and transformations along the continuum from farm field to ground water, watersheds, streams, rivers, and coastal marine environments are discussed. Described are aerial transport of nitrogen from livestock and agricultural systems and the potential for deposition and impacts. The current status of nitrogen in the environment in selected terrestrial and coastal environments and crop and forest ecosystems and development of emerging technologies to minimize nitrogen impacts on the environment are addressed. The nitrogen cycle provides a framework for assessing broad scale or even global strategies to improve nitrogen use efficiency. Growing human populations are the driving force that requires increased nitrogen inputs. These increasing inputs into the food-production system directly result in increased livestock and human-excretory nitrogen contribution into the environment. The scope of this book is diverse, covering a range of topics and issues from furthering our understanding of nitrogen in the environment to policy considerations at both farm and national scales.

Physiology of Crop Production

Physiology of Crop Production
Author: N.K. Fageria
Publisher: CRC Press
Total Pages: 366
Release: 2006-05-16
Genre: Technology & Engineering
ISBN: 9781560222897

This single volume explores the theoretical and the practical aspects of crop physiological processes around the world The marked decrease over the past century in the land available for crop production has brought about mounting pressure to increase crop yields, especially in developing nations. Physiology of Crop Production provides cutting-edge research and data for complete coverage of the physiology of crop production, all in one source, right at your fingertips. This valuable reference gives the extensive in-depth information soil and crop professionals need to maximize crop productivity anywhere the world. Leading soil and plant scientists and researchers clearly explain theory, practical applications, and the latest advances in the field. Crop physiology is a vital science needed to understand crop growth and development to facilitate increases of plant yield. Physiology of Crop Production presents a wide range of information and references from varying regions of the world to make the book as complete and broadly focused as possible. Discussion in each chapter is supported by experimental data to make this book a superb resource that will be used again and again. Chapter topics include plant and root architecture, growth and yield components, photosynthesis, source-sink relationship, water use efficiency, crop yield relative to water stress, and active and passive ion transport. Several figures and tables accompany the extensive referencing to provide a detailed, in-depth look at every facet of crop production. Physiology of Crop Production explores management strategies for: ideal plant architecture maximizing root systems ideal yield components maximizing photosynthesis maximizing source-sink relationship sequestration of carbon dioxide reducing the effects of drought improving N, P, K, Ca, Mg, and S nutrition improving micronutrient uptake Physiology of Crop Production is an essential desktop resource for plant physiologists, soil and crop scientists, breeders, agronomists, agronomy administrators in agro-industry, educators, and upper-level undergraduate and graduate students.

Growth and Productivity of Winter Maize (Zea mays L.) Under Different Levels of Nitrogen and Plant Population

Growth and Productivity of Winter Maize (Zea mays L.) Under Different Levels of Nitrogen and Plant Population
Author: Jiban Shrestha
Publisher: Universal-Publishers
Total Pages: 133
Release: 2015-09-29
Genre:
ISBN: 1612334407

A field experiment was conducted at farmer’s field of Anandapur, Mangalpur VDC-3, Chitwan, Nepal during winter season from September 2006 to February 2007 to study the effects of nitrogen and plant population on maize. Fifteen treatment combinations consisting of five levels of nitrogen: 0, 50, 100, 150 and 200 kg N/ha and three levels of plant population; 55555 plants/ha (60 cm × 30 cm spacing), 66666 plants/ha (60 cm × 25 cm spacing) and 83333 plants/ha (60 cm × 20 cm spacing) were tested in factorial randomized complete block design (RCBD) with 3 replications. “Rampur Composite” variety of maize was planted on sandy silt loam and strongly acidic soil having medium in total nitrogen (0.123%), high in soil available phosphorous (77.56 kg/ha) and low in soil available potassium (23.25 kg/ha). The research findings revealed that each level of nitrogen significantly increased grain yield upto 200 kg N/ha. The grain yield (6514.48 kg/ha) obtained under 200 kg N/ha was significantly higher than that of 0, 50, 100 and 150 kg N/ha. The percent increment in yield due to application of 50, 100, 150 and 200 kg N/ha was to the extent of 62.11, 104.74, 135.68 and 154.74%, respectively over control. Significant effect on grain yield due to different levels of plant population was observed. The grain yield (5113.46 kg/ha) obtained under 66666 plants/ha was statistically at par with that under 83333 plants/ha, but significantly superior over that under 55555 plants/ha. The interaction between different nitrogen levels and plant densities on grain yield showed that the highest grain yield (6925.79 kg/ha) was obtained under treatment of 200 kg N/ha + 66666 plants/ha. The yield attributes namely number of cobs/plant, cob length, cob diameter, number of grain rows/cob and 1000 seed weight significantly increased with increasing N levels and decreasing plant population levels. The number of barren plants/ha decreased with increasing levels of N but increased with increasing levels of plant population. The net return (Rs. 42188.74/ha) and benefit:cost ratio (1.67) obtained under 200 kg N/ha were significantly highest than that obtained under other levels of nitrogen (150, 100, 50 and 0 kg N/ha). The plant population of 66666 plants/ha gave the highest net returns (Rs. 25812.28) which was 10.19 and 49.64% higher than that of 83333 plants/ha and 55555 plants/ha, respectively. The benefit: cost ratio (1.44) obtained under 66666 plants/ha was significantly higher than that of 55555 and 83333 plants/ha. The interaction between different nitrogen levels and plant densities on economics of maize production showed that significantly highest net return (Rs.48606.98) and B:C ratio (1.78) were under treatment of 200 kg N/ha + 66666 plants/ha. The highest grain yield and maximum profit were obtained when maize variety “Rampur Composite” was planted with 200 kg N/ha and plant population level of 66666 plants/ha (60 cm × 25 cm spacing).